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Abstract Surface-wave methods are widely used in earth sciences and engineering
for the geometric characterization of geological bodies and tectonic structures of
the subsurface. These techniques exploit the dispersive nature of Rayleigh waves
to indirectly estimate shear wave velocity profiles from surface-wave measurements,
however they are limited to parallel-layered geometries. To overcome such limitations,
we present a new class of geometric inverse models for a full waveform inversion
(FWI) based on the boundary element method (BEM). The proposed approach enables
an effective identification of two dimensional (2D) subsurface geometries by directly
estimating the shape of laterally varying interfaces from raw measurements. It thus
aims at filling the gap between the standard simplistic parallel-layered-based inversion
and that of more complex three-dimensional (3D) geometries based on finite element
methods (FEMs). Numerical tests on synthetic data unveil the effectiveness of the
inverse algorithm, and its applicability to field measurements is finally presented.

Introduction

The geometric characterization of geological bodies and
tectonic structures of the subsurface is a crucial issue in many
fields of earth sciences and engineering, and particularly for
seismic hazard assessment. Indeed, a good geological knowl-
edge of the subsurface allows researchers to predict local seis-
mic effects for microzonation at large scales ∼O�103� m
(sedimentary basins or alluvial valleys) or to locate with suf-
ficient precision a fault trace and provide useful information
for antiseismic management plans at smaller scales
∼O�103� m. Direct investigations, such as drilling or excava-
tions, yield pointwise information of the subsurface, but they
are very expensive, even at the metric-to-decametric scale.
Common alternativemethods are based on the analysis of pas-
sive (natural) or active (artificial) seismic waves. In particular,
in recent years surface wave methods (SWMs) have been
widely used to reveal subsurface properties, especially those
of S waves in shallow depths (∼30 m), which are relevant for
planning any construction in areas prone to seismic risk.

Surface wave methods utilize the dispersive nature of
Rayleigh waves in a vertically heterogeneous half-space to
obtain the shear wave velocity profile from the wave particle
motions excited and recorded on the ground surface. To date,
many variations of the basic test and inversion protocol exist,
such as the two-receiver approach based on the spectral
analysis of surfacewaves (Nazarian et al., 1984; Stokoe et al.,
1994) and the multichannel method that exploits arrays of
receivers (e.g., Gabriels et al., 1987; Tokimatsu, 1995;
Tselentis and Delis, 1998; Park et al., 1999; Strobbia and
Foti, 2006). Other techniques utilize passively generated sur-
face waves to increase penetration depth (Louie, 2001; Rix
et al., 2002; Park et al., 2005) and to enable inversions of soil

damping ratios via measurements of wave attenuation (Rix
et al., 2000, 2001; Lai et al., 2002).

The inverse problem at the root of SWMs requires a
forward model to solve the propagation, scattering, and
dissipation of seismic waves through the medium. This is
idealized as a sequence of flat, horizontal, isotropic, and
homogeneous layers. Such models are capable of capturing
only a discrete vertical variation in elastic properties, that is,
they are one dimensional (1D). One of their attractive fea-
tures is that they are computationally efficient to calculate
the modal displacements and tractions using matrix opera-
tions (Kausel and Roesset, 1981; Aki and Richards, 2002),
which makes such models ideal for inverse problems
employing iterative solutions. Clearly, however, this model
is only an approximation of the actual subsurface conditions
for most sites, and it may yield misleading results if the
actual soil profile is far from the assumed geometry. Indeed,
the major drawback is that wave propagation is modeled as
the linear superposition of dispersive Rayleigh modes that do
not interfere or diffract as they would if the profile were not
horizontally layered. Observations and modeling of earth-
quakes confirm, for example, that seismic waves can be am-
plified at alluvial valley edges, and diffraction effects can be
observed because the interface between soft sediments and
bedrock is far from being horizontal (Bard and Gabriel,
1986; Aki, 1988; Kawase, 1988; Kawase and Aki, 1989).
Furthermore, surface topography can alter seismic wave pro-
pagation (Bard, 1982; Raptakis et al., 2000; Assimaki and
Kausel, 2007). In particular, amplification is usually ex-
pected at hilltops (Bard, 1982), and complex amplified and
deamplified patterns occur at hill flanks (Savage, 2004).
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Several attempts have been made to model lateral
variations via the so-called pseudo-2D inversion (e.g., Luo
et al., 2008), in which successive 1D inversions along the
length of the survey are combined via interpolation or other
type of smoothing kernel; however, this approach is inher-
ently limited. Analytical solutions of forward models for true
2D and 3D media are available, but only for a very restricted
class of weakly varying layered geometries (Gjevik, 1973;
Maupin and Kennett, 1987; Dravinski and Mossessian
1997; Maupin, 2007). As such, these solutions are of limited
practical value.

Thus, the further maturation of SWMs has been limited
by the lack of effective and efficient computational models
that enable more realistic representations of 2D/3D subsur-
face media. Only recently, for crustal and lithospheric scale
structures have such limitations been overcome by a full seis-
mic waveform inversion (FWI) methodology that combines
an effective forward model based on the finite element meth-
od (FEM) to model seismic wave propagation and adjoint
techniques to efficiently compute the gradient of the data
misfit functional to perform minimization (e.g., Virieux and
Operto, 2009; Fichtner, 2010). When an FEM forward model
is used, complex media are finely discretized into a large
number of nodes or 3D volume elements. Each node is as-
sociated with an unknown parameter, which characterizes
the soil seismic property at that node location. Typically,
the number of parameters to be estimated largely exceeds the
number of measurements available by several orders of
magnitude; thus, the inverse problem is severely ill-posed.
Ill-posedness is usually treated by regularization procedures
(Tikhonov and Arsenin, 1977; Tarantola, 1987) by including
additional constraints that yield well-posed inverse algo-
rithms. The shortcoming is that, as with most nonlinear
inverse methods, these approaches suffer from slow conver-
gence and instability. Indeed, it is well known that a good
starting model is needed in FWI, and generally in inverse
methods, to avoid false positives (i.e., false result indica-
tions) that may arise because local optimization does not pre-
vent convergence of the misfit function toward local minima.

In this paper, we propose an alternative surface-wave
inversion formulation based on the boundary element meth-
od (BEM) (see, for example, Brebbia and Dominguez, 1992)
that overcomes the previously mentioned limitations of
FEM-based FWIs, and at the same time still exploits a far
more realistic modeling of the subsurface than the current
state-of the-art SWMs. The proposed BEM-based FWI aims
at filling the gap between the standard simplistic parallel-
layered-based SWM and the more complex 3D FEM-based
FWI, enabling an effective and better geometric characteriza-
tion at any geological scale. The associated forward model is
solved by the BEM, which is very effective for applications in
which soil properties of the medium may be considered as
regionally homogeneous (Beskos, Leung and Vardoulakis,
1986; Beskos, Dasgupta and Vardoulakis, 1986; Manolis
and Beskos, 1988; Xu, 2001; Katsikadelis, 2002). Indeed,
BEM was previously exploited to solve problems concerning

structural vibration analysis, transient waves, and dynamics
of cavities under the influence of body or surface waves
(Manolis and Beskos, 1981, 1983, 1988; Beskos, Leung
and Vardoulakis, 1986; Beskos, Dasgupta, and Vardoulakis,
1986) and to investigate the propagation of seismic waves in
laterally varying layered media (Dineva and Manolis,
2001a, 2001b).

The proposed FWI approach is geometric because it in-
fers the shape of 2D unknown irregular interfaces between
regionally homogeneous soil layers directly from single-
frequency measurements at the receivers, instead of an
indirect inference from the observed dispersion curve, or an
interpretation from maps of elastic properties estimated via
FEM-based inversions. The elastic parameters are assumed to
be given, but they can be easily estimated together with the
geometric properties of the subsurface. This joint inversion is
fairly straightforward and will be discussed elsewhere.

The paper is structured as follows: we first introduce the
analytical formulation of the forward model for the wave
propagation through 2D laterally varying layers and the
associated numerical solution via BEM. Then a general in-
verse problem is introduced for the inference of subsurface
interface geometries. To illustrate the potentialities of the
geometric wave inversion, applications to benchmark pro-
blems and to a set of experimental data are finally presented.

BEM-Based Forward Model

Consider monochromatic waves at frequency ω propa-
gating through a 2D subsurface made of N layers, as shown
in Figure 1a. Let Ωj be the generic layer bounded by the
curve Γ � Γj�1∪Γj, and x and z are the horizontal and ver-
tical coordinates, respectively. In the frequency domain, the
wave propagation in the generic j-th layer is governed by the
following integral equation (Beskos, Leung and Vardoulakis,
1986):

Z
Γ
U�j��x; s;ω�tj�N��x;ω�dΓ

�
Z
Γ
T�j��x; s;ω�uj�x;ω�dΓ� Cuj�x;ω�; x∈Γ; (1)
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Figure 1. (a) Model setup and (b) BEM-based inversion of syn-
thetic data on a two-layered media, intermediate iterations show
convergence to the target interface. No noise added to simulated
measurements at the receivers.
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where �=� superscript refers to the values of stresses
or displacements at the upper and lower layers adjacent to
the interface Γj, and N is the outward normal. The funda-
mental tensors U�j� and T�j� are given in Dominiguez et al.
(1984), and they depend upon the elastic parameters of the
layer j, viz. density ρj, shear modulus μj, and Poisson’s ratio
νj. The �2 × 2� tensor C accounts for singular contributions
of the Green tensor U�j�, when x � s, as well as for energy
conservation in infinite domains (Dominiguez, 1993).
Continuity of displacements and tractions at each interface
requires that

u�j �x;ω� � u�j �x;ω�;
t�
j�N���x;ω� � �t�j�N���x;ω�; x∈Γj; (2)

for j � 1;…N. Further, vanishing normal stress t�0�N� must
be enforced at the free surface Γ0, except at the source loca-
tion x0∈Γs where t�0�N� � f0�ω�δ�x�x0�ẑ, f0 being the Four-
ier amplitude of the load along the normal ẑ to Γ0, and δ�x� is
the Dirac function. Hereafter, we drop denoting the depen-
dence on ω, and the numerical approximation of equation (1)
is obtained by discretizing each interface Γj in ej quadratic
isoparametric elements, along which the values of displace-
ments and tractions are given, respectively, by

uj�x� �
X3
n�1

Pn�η�u�j�k;n;

tj�N��x� �
X3
n�1

Pn�η�t�j�k;n; x∈Γj;k; (3)

where ujk;n and t
j
k;n are displacements and tractions vectors at

the nth node on the kth element Γj;k, and Pn�η� are interpo-
lating functions with η∈��1; 1�. Using equation (3) and cy-
cling the point of application of the fundamental tensors
through all the nodes, a system of linear equations for the
layer j follows as

�K�j��fu�j�g � �G�j���1�H�j��fu�j�g � ft�j�g; j � 1;…N;

(4)

where the matrices �G�j�� and �H�j�� are given in Beskos,
Leung, and Vardoulakis (1986), and the vectors fu�j�g and
ft�j�g list displacements and tractions at the boundary nodes,
respectively. These are degrees of freedom in a coordinate
system local to the layer. Equations (4) are assembled by
imposing the matching conditions of equation (2) following
Beskos, Leung, and Vardoulakis (1986). The resulting linear
system can be written in compact form as

�K�ug � tg; (5)

where ug and tg are global degrees of freedom with respect to
the fixed coordinate system as shown in Figure 1. The solu-
tion of equation (5) follows after imposing loads and zero

stresses at the free surface. Weight drop or sledgehammer
are modeled in Fourier space as a nodal stress vector of
intensity f0�ω� and perpendicular to the free surface. For
massive sources, such as an electromechanical shaker on a
portion Γs of the free surface, the generated stress is given
by ts � mω2ds � F, where the vectors F and ds represent the
force produced by the shaker and the displacements of Γs,
respectively, with m being the shaker’s mass. To test the nu-
merical implementation of equation (4), we have considered
the elastic problem of solving for the radial displacements on
an infinitely long cylinder subject to a normal stress p. This
admits an exact analytical solution given by Kitahara (1984).
We set the elastic characteristics of the cylinder as ρ �
100 kg=m3, μ � 106 N=m2, ν � 0:25, damping ratio βr �
0:05, and the normal load f0 � 1002 N=m2. Figure 2 shows
the BEM numerical stresses at two different resolutions and
those expected from theory for 10 < ω < 150. The agree-
ment with theory is remarkable (see also Dominguez, 1993).
We point out that BEM can be easily generalized to multi-
frequency environments and 3D geometries. Further, viscoe-
lasticity can be accounted for by the elastic-viscoelastic
correspondence principle of linear viscoelasticity (Christen-
sen, 1971; Manolis and Beskos, 1981).

Geometric BEM-Based Wave Inversion

Assume that the Fourier amplitudes udk�ω� of the vector
displacements are known from measurements using Nrec

receivers at x�r�k ∈Γs and k � 1;…Nrec. Further, we focus
only on identifying the geometry of the boundary interfaces
Γj and consider the elastic properties of the layers to be
known a priori. We point out that these parameters could
be easily estimated together with the geometry, but this
will be discussed elsewhere. We consider an initially uniform
discretization along x̂ using nj nodes for each interface Γj,
located at x�j�k � �x�j�k ; z�j�k �, k � 1;…; nj. We calculate the
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Figure 2. Radial displacements of an infinitely long cylinder
subject to normal stress as function of the frequency ratio ω=ω1:
BEM versus analytical solution (Kitahara, 1984; Dominguez,
1993). (resonance frequency ω1 � 59:73 rad=s).
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optimal iterative displacement of these nodes by computing
the first variation of the following energy functional:

E � 1

2

XNRec

r�1

kuk � udkk2

� α
XNint

j�1

Xe�j�
k�1

Z
1

�1

��
∂x�j�k =∂η

�
2

�
�
∂z�j�k =∂η

�
2
�1

2

dη:(6)

Here, the first term represents the mismatch between mea-
sured data at the receivers and the displacements uk calcu-
lated from the forward model in equation (4), hereafter
referred to as the misfit E. The second term is an arc-length
regularizer that ensures smoothness of the boundary inter-
face. This helps us avoid local minima of the energy repre-
sented in equation (6) due to measurement noise as well as
avoid the ill-posedness of the problem when the number of
degrees of freedom, ndof �

PNint
j�1 nj, exceeds the number of

available measurements (2Nrec). Nint is the number of inter-
faces to be estimated, and e�j� is the number of elements on
the jth interface.

The energy functional in equation (6) depends nonli-
nearly on the interfaces and is therefore difficult to minimize
directly. We apply an iterative deformation of an initial
guessed interface by discretizing the continuous gradient
descent flow obtained from the first variation of our energy
functional E. Let Γ�0�

j be an initial guess for the unknown
(target) interface Γj, with nodal coordinates

xi � �x�j�i ; z�j�0;i �: (7)

To minimize E, we restrict the deformation of the curves to
small perturbations along the vertical direction only by
setting

z�j�i � z�j�0;i �Δ�j�
z;i Δ�j�

z;i ≪ z�j�0;i : (8)

Further, we indicate with Δp the inversion parameters cor-
responding to the Δ�j�

z;i perturbations. The Taylor expansion
of equation (6) to the first order with respect to Δp is

uk � u�0�k � ∂uk
∂Δp

Δp �O�Δ2
p�; p � 1;…; n; (9)

where O�Δ2
p� denotes the neglected higher-order terms of

the series. Note that u�0�k is the BEM-solution for a geometry
with interfaces Γ�0�

j , and ∂uk∂Δp
is the pth row of the Jacobian

matrix �J�, which measures the changes of the wave displace-
ments at the receivers due to perturbations of the interfaces
Γ�0�
j . The matrix �J� is computed numerically via standard

second order finite-differencing from equation (4). We antici-
pate that an adjoint solution (Eppstein et al., 2003; Fedele
et al., 2003, 2005) was formulated for Helmholtz-type equa-
tions, and we are extending it to the Navier equations in order

to efficiently compute �J� for ndof ≫ 2Nrec using active sur-
faces (Yezzi et al., 2002, 2003).

From equation (6),

∂E
∂Δp

�
� ∂uk
∂Δp

�
T
�
uk0 �

∂uk
∂Δp

Δp � udk

�

� α
XNint

n�1

�Xnj
i�1

rpiΔi � qp

�
; (10)

where T denotes Hermitian transpose, and

rpi �
Xne
k�1

X3
a;b�1

Z
1

�1
�γk � γ3kϕ2

zk�P0
aP

0
bδbldη; (11)

qp �
Xne
k�1

X3
i�1

Z
1

�1
γkϕzkP

0
iδildη; l � p � 2�k � 1�:

(12)

Here, δnm is the standard Kronecker delta,

γk � 1=
��������������������
ϕ2
xk � ϕ2

zk

q
, and

ϕxk � P0
1�η�x01;k � P0

2�η�x02;k � P0
3�η�x03;k ;

ϕzk � P0
1�η�z01;k � P0

2�η�z02;k � P0
3�η�z03;k ; (13)

where P0 denotes a derivative of P with respect to η. The
index k labels the interface elements, and l accounts for
corresponding node-elements. The optimal correctionsΔp to
reduce our energy functional from equation (6) are obtained
by setting equation (10) to zero. This yields the optimal de-
formationΔz as a solution of the linear system of equations,
whose matrix form is given by (Bignardi, 2011):

f�JJT � � α�R�gΔz � ��J�fuk0 � udkg � αfqg; (14)

where Δz is a column vector that lists the vertical perturba-
tionsΔp, and the matrix entries in �R� and fqg are rpi and qp,
respectively.

Thus, starting from an initial guessΓ�0�
j for the interfaces,

the energy represented in equation (6) is minimized iteratively
by evolving the interfaces according to equation (14), until the
error er � max�jΔpj� is smaller than a chosen tolerance ϵ.
Relaxation is introduced to limit the increments Δp at each
iteration by penalizing the squared norm of Δz. This adds
an extra term β�I� to the left side of equation (14), where
�I� is the identity matrix and β is a fixed constant. The weight
α of the regularizer is initially chosen large enough so that the
algorithm reconstructs the coarser scale features of the curve;
as the error er reduces, α is decreased to allow reconstruction
of the finer scale features.

3

4 S. Bignardi, F. Fedele, A. Yezzi, G. Rix, and G. Santarato



Applications

In the following we will test consistency and effective-
ness of the geometric algorithm from equation (14) using
synthetic data for the simple case of a one-layered geometry.
Further, as a field-case study we present the inversion
of an experimental data set collected at a site in Alabama
in 2004.

Synthetic Data

Consider a 2D laterally varying layer on a half-space such
as Figure 1b and a typical instrumentation setup for surface-
wave testing at the geotechnical scale ∼O�10� m. In particu-
lar, the receivers are equally spaced every 4 meters, and the
source is located 3 meters away from the closest receiver.
We assume to know the source, and the two different elastic
characteristics of the two layers are considered. The first case
represents a high acoustic impedance jump scenario with
parameters VS � 150�800� m=s, VP � 500�2000� m=s, and
ρ � 1600�2200� kg=m3 for the upper (lower) layer. The sec-
ond case, on the other hand, represents a low impedance jump
configuration with parameters VS � 150�250� m=s, VP �
500�1000� m=s, and ρ � 1600�2000� kg=m3. Further, the
source intensity f0�ω� � 1000 N at frequency ω � 1 rad=s.
The laterally varying interface Γ should be inferred correctly
(within given numerical accuracy) from both zero-noise
horizontal and vertical displacements (data) collected at the
seven receivers. Corrupted data may lead to estimates that
deviate from the true interface, and such deviations will also
be quantified. The unknown interface is discretized using 33
nodes. For the inversion, data at the receivers are simulated
using the forward model from equation (4) and consist of
complex Fourier amplitudes of both vertical and horizontal
displacements. At first, no noise is added to data in order
to test the convergence properties of the algorithm. The num-
ber of model parameters (33) is slightly larger than that of the
available data (2 × 7). The arc-length regularizer in equa-
tion (6) guarantees a course-to-fine scale reconstruction of
the unknown interface. The initial guessed interface Γ is
set as horizontal at z � �25 m. Some of the intermediate iter-
ates are shown in Figure 1 to illustrate the convergence toward
the target interface. Observe that the iterated curve translates
rigidly at the first few iterations as a result of the initially large
arc-length regularization. As the iterations increase, the reg-
ularizer is reduced, and the curve deforms accordingly to
adapt to the shape of the target interface in roughly 1500
iterations.

The algorithm runs in a MATLAB environment on a
MacBook with an Intel dual core at 2.4 Ghz, and the com-
putational time is about 40 s=iteration. An adjoint-based in-
version is under development to speed up the algorithm (see,
for example, Fedele et al., 2003 and Eppstein et al., 2003 for
an application of adjoint methods in optical tomography).
Further, implementation of the algorithm in a C�� environ-
ment will also reduce the computational burden.

To investigate the performance of the algorithm under
noisy data, we added a Gaussian noise to the simulated mea-
surements (both x and y components) with standard devia-
tion σ � �P=100�Qmax=3, with P � 5% as the noise
percentage, and Qmax as the maximum value of the data
(phase or amplitude) to be perturbed, which usually corre-
sponds to the value recorded at the receiver with minimum
offset. Note that the noise level of Fourier amplitudes corre-
sponds to a larger error in the associated time-series dis-
placements due to the nature of the Fourier transform. In par-
ticular, the algorithm still provides a good estimate of the true
interface as shown in Figures 3 and 4, for the two previously
mentioned cases of low and high impedance jumps. In the
same figures, in order to appreciate convergence we also re-
port the normalized misfit E=E0 as a function of the number
of iterations, with E0 being the relative misfit of the initial
guess. The inversion results are more sensitive, and thus less
accurate, when noise is added to phases only (curve P) than
when noise is added to amplitudes only (curve A), as clearly
seen from the plots of the misfit errors in Figures 3–6. The
largest separation along z between the estimated and target
interfaces ranges from 1.2% to 8% with respect to the vertical
extent of the dipping part of the layer, viz. Δh � 15 m. On
the other hand, in field surveys only the vertical component
of displacements is usually recorded. Thus, it is relevant to
check the performance of the geometric algorithm when hor-
izontal measurements are discarded in the inversion. Figure 5
shows the converged interfaces when noise is added only to
phases (curve P) or amplitudes (curve P). Clearly, the geo-
metric algorithm identifies the major features of the target
interface, even if half of the data are discarded. In such con-
ditions, the arc-length parameter α is decreased at a slower
rate to yield a smoother course-to-fine evolution of the iter-
ated curve. Moreover, a larger value of the Tikhonov param-
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eter β is required to limit the correction of the curve at each
iteration. As a result, the number of iterations has increased
in comparison to the cases in which the entire set of data is
exploited. The geometric algorithm can also handle irregular
free surfaces in a natural manner, as clearly illustrated in
Figures 6 and 7, where we report the reconstructed curves
for data with noise level P � 10%.

Observe that in all the inversions, we saw a remarkable
agreement between data (ud) and the associated modeled
values (u), within the accuracy of measurements. For exam-
ple, Figure 8 reports Fourier amplitudes and phases of mea-
surements at the receivers in comparison with the associated
estimated values for the inversion of Figure 3. Clearly, the
BEM geometric algorithm is effective in reconstructing the
interface Γ from noisy data.

Field-Case Study

We point out that the geometric algorithm is effective in
estimating lateral interfaces; therefore, the geometric algo-
rithm was also applied to flat interfaces as a particular case,
without introducing artifacts. To prove this, we considered an
experimental data set collected at a site in Alabama in 2004.
The experimental campaign was carried out using an electro-
mechanical shaker equipped with an additional reactive mass
that acts as a harmonic source at frequencies ranging from ∼3
to 100 Hz; therefore, these data are particularly indicated for
one-frequency inversion. Vertical particle accelerations were
measured by a linear array of 15 low-frequency acceler-
ometers located at distances ranging from 2.4 to 32 meters
from the source. Figure 9 shows the typical shear wave ve-
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(lower) layer.
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Figure 5. Sensitivity of the algorithm to noise level (5%): con-
verged interfaces for unperturbed data, noisy amplitudes (A) and
phases (P), respectively; (a) case of low acoustic impedance jump
and (b) corresponding normalized misfits E=E0 as functions of the
number of iterations. Elastic parameters: VS � 150�250� m=s,
VP � 500�1000� m=s, and ρ � 1600�2000� kg=m3 for the upper
(lower) layer.
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Figure 6. Boundary element method-based geometric inversion
for geometries with nonflat free surfaces: reconstructed interfaces
for corrupted amplitudes (A) and phases (P), respectively; (a) high
acoustic impedance jump case and (b) associated normalized
misfits E=E0 as functions of the number of iterations. Elastic
parameters: VS � 150�800� m=s, VP � 500�2000� m=s, and
ρ � 1600�2200� kg=m3 for the upper (lower) layer.
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Figure 7. Boundary element method-based geometric inversion
for geometries with nonflat free surfaces: reconstructed interfaces
for corrupted amplitudes (A) and phases (P) respectively; (a) low
acoustic impedance jump case and (b) corresponding normalized
misfits E=E0 as functions of the number of iterations. Elastic
parameters: VS � 150�250� m=s, VP � 500�1000� m=s, and ρ �
1600�2000� kg=m3 for the upper (lower) layer.
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locity profile estimated from conventional surface-wave test-
ing on the field setup of Figure 10. We can approximate such
geometry with that of a soft upper layer with thickness
∼30 m laying on top of an half-space. An estimate of the
shear velocity VS30 of the top layer is obtained from the pro-
file of Figure 9 as

VS30 �
Xnl
i�1

di

�Xnl
i�1

di
VS�i�

; (15)

where di and VS�i� are thickness and shear wave velocity of
the ith layer, respectively, and similarly for that of the half-
space. Further, remaining elastic parameters are inferred
from some geological knowledge of the region. As a result,
the elastic properties of the top layer (half-space) are set
as VS � 335�1369� m=s, VP � 664�2001� m=s, and ρ �
1500�2400� kg=m3, respectively. To proceed with the inver-
sion at the excitation frequency ω � 10 Hz, we first com-
puted the Fourier spectrum S�w� of the measured vertical
displacements, which is very narrow. Integrating the spec-
trum around ω over a window Δw=ω ∼ 0:01 (to filter out
noise at lower and higher w’s) provides the complex Fourier
amplitudes at the receivers to be used as data in the BEM
inversion. Here, the shaker force is modeled at the source
node as ts � mω2ds � Fgẑ, where Fg is the maximum force
magnitude generated by the shaker, and m is the sum of re-
active and device masses. The free surface Γs is discretized
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for the case of noisy data with corrupted amplitudes only (see curve
A of Fig. 3 for the associated reconstructed interface); (b) modeled
phases against data at the receivers for noisy data with corrupted
phases only (see curve P of Fig. 3 for the associated reconstructed
interface). Noise level P � 5% and error bars denote stability bands
of measurements.
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using 67 nodes, and the unknown interface Γ1 is discretized
with 41 nodes. The inverse problem is ill-posed because we
have 15 receivers and 41 unknowns, so the arc-length reg-
ularizer is needed. As shown in Figure 10, the initial guess
of the unknown interface Γ1 is set as horizontal at z �
�60 m. The algorithm converged in 27 iterations, and some
intermediates are shown in the same figure. Observe that in
few iterations the iterate rigidly translates to nearby
z ∼ �24 m, then it shapes in to a very mild laterally varying
interface, in good agreement with the local geology, which
was previously known to be almost 1D. Shaping requires
more iterations than translation as in the inversion of syn-
thetic data (see Fig. 1).

The single-layer inversion provides an estimate of the
location of the interface between the upper soft layer and
the hard bottom at approximately z ∼ �24 m. The model fit
the data, as illustrated in Figure 11, where we report the mod-
eled Fourier amplitudes and measurements at the receivers.
Better agreement with data (especially for amplitudes) could
be attained by performing the inversion with a multilayer
geometry to have a better resolution of the softer, shallow
layers of Figure 9. This is currently under investigation.

Conclusions

We have introduced a geometric inversion formulation
that overcomes the stiffness of classic surface-wave methods
in dealing with nonparallel subsurface layers. The inverse
model exploits the BEM to infer the shape of 2D laterally
varying interfaces directly from measurements at the recei-
vers. No indirect inference is observed from the dispersion
curve. Indeed, the proposed inverse algorithm exploits the
ability of the BEM to model wave propagation through a
medium whose soil properties may be approximated as re-
gionally homogeneous. Tests on both synthetic and experi-
mental data on 2D geometries provide evidence that the
BEM-based geometric inversion is effective even in the pre-

sence of noise and is applicable for cases over large horizon-
tal scales with steep interfaces, irregular free surfaces, and
subsurfaces with low acoustic impedance ratios.

The method is easily generalizable to 3D geometries,
and the estimated geometry provides a good initial guess
for FEM-based FWIs in order to reconstruct higher-order
structured heterogeneities. Thus, BEM-based inverse models
have the potential to improve the effectiveness and accuracy
of FEM-based inversions. Further, the BEM forward model
can be accelerated using fast multipole techniques (Gumerov
and Duraiswami, 2004; Liu, 2009), in combination with the
use of adjoint methods to speed up the computation of the
Jacobian, thus drastically reducing the computational burden
of the algorithm.

We believe that the application of BEM-based inverse
models to geological problems from small to large scales will
enable researchers and other stakeholders to investigate the
underground geological complexities with a low cost-to-
benefits ratio method. Our preliminary results are very pro-
mising, with successbeing achieved in nicely reproducing an
irregular interface in a 2D layered model. As far as the
approach is in principle scale-invariant and has no space lim-
itations, work is in progress to extend it for the inversion of
multifrequency data and 3D multilayered geometries with in-
clusions or cavities. This will empower complete reconstruc-
tions of the subsurface in complex geological and tectonic
structures at any scale.

Data and Resources

Available data were collected by G. J. Rix, and they can-
not be shared publically.
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Appendix

BEM Matrices
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Further,

�Us
kn�ji �

Z
1

�1
Uji�xk�η�; xs;ω�Pn�η�J�η�dη;

�T s
kn�ji �

Z
1

�1
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(A3)

Here, Uji�xk�η�; xs;ω� is the 2 × 2 fundamental tensor
whose entries represent the i component of displacements
at xk�η� on the element k due to a Dirac source at xs directed
along j where i, j � 1 or 2 (x or z directions). Further, Us

kn is
the fundamental tensor Uji projected onto the element
k∈�1; ne� at the node n∈f1; 2; 3g with a Dirac source at
the node s∈�1; nj�. Finally, the Lagrangian interpolation
functions and Jacobian are defined, respectively, as

P1�η� � �1=2η� 1=2η2;

P2�η� � 1 � η2;

P3�η� � 1=2η� 1=2η2; (A4)

and
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������������������������������������������������������������������X3
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dη
xi

�
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�
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with �xi; zi� as the nodal coordinates.
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1. Please check equation (1) and the explanation that follows it. There appears to be no “�=�” superscript until equation
2. Does this explanation belong after the formula for equation (2)?

2. Journal style requires that an identifying term be used with each parenthetical reference to a display formula. Here and
throughout, the word “equation” has been inserted before the parenthetical numbers referring to the formulas.

3. Equation numbers have been added to the three unnumbered equations between equation (6) and the originally num-
bered equations (7)–(12). The remaining equations have been renumbered and the text references to them have been
updated with the new numbers. Also, the outer parenthesis in the new equation (7) have been changed to square
brackets to avoid double parentheses within this formula. Is this change consistent with your intended meaning?

4. This sentence has been expanded. Does it still represent your intended meaning?
5. It is journal style not to use titles such as “prof.” in the paper. The name of “G. J. Rix” now appears without the title

“prof.”
6. Dravinski reference: An Internet search revealed the year of publication as 1987.
7. Kawase reference: An Internet search revealed that the word “response” should be replace with “reference” in the title

for this source article.
8. Please verify the authors’ affiliation data and the affiliation addresses at the end of the paper.
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