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Abstract

We present an application of a novel Variational Wave Acquisition Stereo System (VWASS) for the estimation of the wave surface
height of oceanic sea states. Specifically, we show that VWASS video technology combined with statistical techniques based on
Euler Characteristics of random fields provides a new paradigm for the prediction of wave extremes expected over a given area of
the ocean.
© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Euler characteristics; Oceanic waves; Image processing; Partial differential equations; Stereo epipolar; Variational methods

1. Introduction

The prediction of large waves is typically based on the statistical analysis of time series of the wave surface
displacement retrieved from wave gauges, ultrasonic instruments or buoys at a fixed point P of the ocean. However,
in short-crested seas the surface time series gathered at the given location tends to underestimate the true actual wave
surface maximum that can occur over a given region of area S around P. Indeed, large waves travel on top of wave
groups, and the probability that the group passes at its apex through P is practically null. The large crest height recorded
in time at P is simply due to the dynamical effects of a wave group that focuses nearby that location within or outside
S forming a larger wave crest. Thus, point measurements can underestimate the global maximum ηmax of the wave
surface height η attained over S. Only in narrow-band sea states, point measurements are exact in predicting such
maximum which is expected to be the same at any point in space. However, realistic oceanic conditions are generally
short-crested and the expected ηmax can be underestimated if wave extremes are not modeled both in space and time as
maxima of random fields rather than those of random processes of time [1,17,3]. The predictions of such space-time
extremes rely on the exceedance probability{ }
Pr max
P ∈ S

η(P) > h (1)
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f the global maximum of η over S. For Gaussian fields, asymptotic solutions of (1) are given by Piterbarg [17], and
y Adler [1] and Adler & Taylor [3] exploiting Euler Characteristics (EC) of random excursion sets. The application
f such advanced stochastic theories to realistic oceanic conditions requires the availability of wave surface data
easurements collected in space on the scale of few hundred meters or smaller. At such scales, the main difficulty for

uch measurements is that radar or SAR remote sensing is not accurate enough to reconstruct the space-time dynamics
nd associated spectral properties. On the other hand, a two dimensional wave probe-type array could be used but it
an be expensive to install and maintain.

In this paper, we overcome these limitations by proposing to use Euler Characteristics techniques in combination
ith video observational technologies to predict wave extremes over a given area. Specifically, we propose a novel
ariational Wave Acquisition Stereo System (VWASS) able to acquire four-dimensional (4D) video data (both in
pace and time) of oceanic states. Indeed, the rich statistical content of 4D data allows reliable estimates of the
xpected largest wave surface height over an area via Euler Characteristics’ theory [1,3]. VWASS has a significant
dvantage as a low-cost system in both installation and maintenance. Further, it provides spatial and temporal data
hose statistical content is richer than that of a time series retrieved from a buoy, which is expensive to install and
aintain. VWASS exploits the combination of state-of-the-art epipolar methods (Benetazzo [4]) and variational partial

ifferential equation techniques (Gallego et al. [12]) for the 4D stereo reconstruction of the spatio-temporal dynamics
f ocean waves.

The paper is structured as follows. We first briefly review the theory behind the variational VWASS and then
ntroduce the EC of excursion sets of random fields. We then estimate the EC of spatial snapshots of oceanic sea states
cquired via VWASS and the associated exceedance probability (1). The broader impact of these results to oceanic
pplications is finally discussed.

.1. The stereo variational geometric method

The reconstruction of the wave surface from stereo pairs of ocean wave images is a classical problem in com-
uter vision commonly known as the correspondence problem (Ma et al. [16]). For VWASS we solve this by two
istinct approaches based on epipolar geometries and variational techniques. In the former, the ‘epipolar algorithm’
f Benetazzo [4] finds corresponding points in the two images, from which the estimate of the real point in the three
imensional terrestrial coordinate system can be obtained. However, this approach may fail to provide a smooth surface
econstruction because of ‘holes’ associated to unmatched image regions [4,16]. This is typical during cloudy days,
hen at a given point on the water surface the same amount of light is received from all possible directions and reflected

owards the observer causing a visual blurring of the specularities of the water. In this case, the water surface is said
o support a Lambertian radiance function [16]. Variational techniques overcome this problem. Under the assump-
ions of a Lambertian surface, following the seminal work by Faugeras and Keriven [7], the three dimensional (3D)
econstruction of the water surface at a given instant in time is obtained in the context of active surfaces by evolving
n initial surface through a PDE derived from the gradient descent flow of a cost functional designed for the stereo
econstruction problem.

To be more specific, the energy being maximized is the normalized cross correlation between the image intensities
btained by projecting the same water surface patch onto both image planes of the cameras. It is clear that such
nergy depends on the shape of the water surface. Therefore, the active surface establishes an evolving correspondence
etween the pixels in both images. Hence, the correspondence will be obtained by evolving a surface in 3D instead
f just performing image-to-image intensity comparisons without an explicit 3D model of the target surface being
econstructed.

To infer the shape of the water surface η(x, y) at the location (x, y) over an area S, we set up a cost functional on the
iscrepancy between the projection of the model surface and the image measurements. As previously announced, such
ost is based on a cross correlation measure between image intensities, which will be noted as Edata(η). We conjecture
hat, to have a well-posed problem, a regularization term that imposes a geometric prior must also be included, Egeom(η).
e consider the cost functional to be the (weighted) sum:

E(η) = Edata(η) + Egeom(η). (2)
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In particular, the geometric term favors surfaces of least area:

Egeom(η) =
∫

η

dA. (3)

The data fidelity term may be expressed as:

Edata(η) =
∫

η

(
1 − 〈I1, I2〉

|I1| · |I2|
)

dA, (4)

where � is the wave surface region within the field of views of both cameras, and 〈I1, I2〉 is the cross-correlation
between the image intensities I1 and I2.

The surface η is found by minimizing E via a gradient flow-based iterative algorithm that starts from an initial
estimate of the surface at time t = 0, η0, and it will make the surface evolve towards a minimizer of E, hopefully
converging to the desired water surface shape. Given a function Φ : � 3x � 3 → � + (�3 and �+ are the 3D Eucledian
space and that of real positive numbers, respectively) and the energy

E =
∫

η

Φ (X, N) dA (5)

with N as the unit normal to η at X, a theorem in Faugeras and Keriven [7] says that the flow that minimizes E is given
by the evolution PDE

ηt = βN, (6)

where ηt is the derivative of η with respect to a fictitious time variable, and the speed β in the normal direction to the
surface that drives the evolution is:

β = 2H(Φ − ΦN · N) − ΦX · N − trace
[
(ΦXN )Tη

+ dN ◦ (ΦNN )Tη

]
. (7)

All quantities are evaluated at the point η = X with normal N to the surface. H denotes the mean curvature. ΦX, ΦN

are the first-order derivatives of Φ, while ΦXN, ΦNN are the second-order derivatives. dN is the differential of the Gauss
map of the surface and (·)Tη

means “restriction to the tangent plane Tη to the surface at η = X′′. Note that our proposed
energy (2) can be expressed in the form of (5) if Φ = (1 − 〈I1, I2〉/ |I1| · |I2|) + α, where α is just a weight for the
geometric prior. In practice, we use the flow based on the first-order derivatives of Φ because it provides similar results
to those of the complete expression, but saves a significant amount of computations,

ηt = (2H(Φ − ΦN · N − ΦX · N))N. (8)

The level set framework has been adopted to numerically implement (8) by Gallego et al. [12]. We have tested the
variational reconstruction algorithm using a set of images, shown in the upper panel of Fig. 1, acquired by Benetazzo
[4] on a water depth of 8 meters. In the lower panel of the same figure it is shown the successful reconstructed surface.
Hereafter, we introduce the concept of Euler characteristics that will be applied to predict the expected number of large
maxima in oceanic sea states exploiting the high statistical content of the acquired video data via VWASS. The stereo
algorithm can then be applied sequentially to reconstruct the evolution of the wave surface in time.

1.2. Euler characteristics

In algebraic topology, the Euler characteristic EC is classically defined for polyhedra according to the formula:

EC = V − E + F, (9)

where V, E, and F are respectively the numbers of vertices, edges and faces in the given polyhedron. The same definition
given in (9) can be adapted to two dimensional (2D) sets which are the focus of this paper. In this case, the EC is also
equivalent to the difference between the number connected components (CC) and holes (H) of the given set, viz.
EC = CC − H. (10)

For a generic 2D setΣ with complicated regions, computing the EC from the definition (10) presents some challenges.
A computationally efficient approach can be devised based on (9). Following Adler [1] we first define a Cartesian mesh
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ig. 1. (Upper panel) input stereo pair images to the algorithm. The rectangular domain (8 m × 8.7 m) of the reconstructed surface has been
uperimposed. The wave height is in the range ±0.2 m. (Lower panel) reconstructed normalized wave surface η via VWASS.

rid Γ of size (�x, �y) that approximates the complicated domain of the given set Σ. The EC(Γ ) is then computed
s follows. Denote F as the number of squares (faces) composing Γ , Eh (Ev) as the number of horizontal (vertical)
egments between two neighboring mesh points and V the number of grid points. The EC(Γ ) then follows from (9)
etting E = Eh + Ev. As the grid cell size �x�y tends to zero, EC(Γ ) → EC(Σ). For example, for a square, according
o (9), EC = 4-4 + 1 = 1 and this is in agreement with (10) since there is only 1 connected component and no holes.

Consider now a 2D random field η as a model for oceanic sea states. At a given instant of time, a snapshot of η over
given region S is shown in Fig. 2. The excursion set

Uη,h = {(x, y) ∈ S : η(x, y) > h}
s the portion of the region S where η is above the threshold h. From Fig. 2 it is clear that the EC of an excursion set
epends very strongly on h. If this is low, then EC counts the number of holes in the given set. If the threshold is high
see Fig. 2, right panel), then all the holes tend to disappear and the EC counts the number of connected components,
r local maxima of the random field. If η is Gaussian and stationary, an exact formula for the expected value of EC,
alid for any threshold, was discovered by Adler [1] and Adler and Taylor [3] in the explicit form

EC(Uη,h) = NSξ exp

(
−ξ2

2

)
, (11)

here (•) means expectation, ξ = h/σ is a normalized threshold amplitude, σ is the standard deviation of η and

NS = AS(2π)−3/2σ−2|Λ|1/2 (12)

s the number of ‘waves’ over the area AS of S, with Λ as the covariance matrix of the gradient ∇η. For small S, the
xcursion set can touch the boundary of S and correction terms need to be added [20].
We point out that the EC of random excursion sets is relevant to oceanic applications because of the work by Adler
1] and Adler and Taylor [3]. Indeed, they have shown that the probability that the global maximum of η exceeds a
hreshold h is well approximated by the expected EC of the excursion set Uη,h, provided the threshold is high. Indeed,
s h increases the holes in the excursion set Uη,h disappear until each of its connected components includes just one
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Fig. 2. Excursion sets (cross points) of a normalized zero-mean Gaussian field Z at the threshold z = 1 (left) and z = 2.5 (right), respectively. Note
that, as the threshold increases the excursion set is the union of isolated regions delimiting the local maxima of Z.

local maximum. Thus, the EC counts the number of local maxima as shown in the right panel of Fig. 2. For very large
thresholds, the EC equals 1 if the global maximum exceeds the threshold and 0 if it is below. Thus, heuristically the
EC(Uη,h) of large excursion sets is a binary random variable with states 0 and 1, and for h > > σ,

Pr

{
max
P ∈ S

η(P) > h

}
= Pr

{
EC(Uη,h) = 1

} = EC(Uη,h). (13)

Note that the global maximum of η is the largest wave surface height expected over the area S. Thus, (13) provides
the basis for the estimate of exceedance probabilities of large wave surface amplitudes by means of the EC of excursion
sets of video images retrieved via VWASS (see Fig. 1).

At first glance, that the EC relates to global maxima may appear odd. In reality there is a deep connection between
the two. Indeed, Adler [1] proved that the expected number EXmax of large local maxima greater than h equals the
expected EC of large excursion sets, viz.

EXmax(h) ≈ EC(Uη,h), for h >> σ. (14)

This statement can be readily proved following the heuristic argument below. For a very large threshold h, the
excursion set Uη,h of a Gaussian field η(x, y) is the union of disjoint elliptical regions covered by local maxima above
h, as shown in Fig. 3. We can thus apply the Poisson clumping heuristics of Aldous [2] as follows.

Without losing generality, consider η Gaussian on a Cartesian coordinate system (t,s) so that the covariance matrix
Λ of ∇η is diagonal with spectral moments mtt and mss (mtt > mss) and the determinant |Λ| = mttmss. Note that t, s are
the principal directions of η and the partial derivatives ∂tη and ∂sη are thus uncorrelated and stochastically independent.
Now, define EXlm(z)dz as the number of local maxima with amplitude in [z, z + dz] so that the expected number EXmax(h)
of maxima larger than h follows as

EXmax(h) =
∞∫
h

EXlm(z)dz. (15)

Further, on the plane η = h define the area Γ (z, h) of the footprint of a local maximum with amplitude z > h (see
Fig. 3). The wave surface around this maximum that occurs at, say, t = t0 and s = s0, is described by the conditional

Slepian model [1,5,13–15]

ηc = {η(t, s) |η(t0, s0) = z } = z

σ2 Ψ (t − t0, s − s0) + R, (16)
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Fig. 3. A typical excursion set Uη,h of a Gaussian field η(x,y), above a very large threshold h. The set is the union of disjoint elliptical regions
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overed by the local maxima above h. Γ (z, h) denotes the area of the elliptical footprint.

here Ψ is the covariance of η and R is a random residual of O(z0). For z > > 1, R can be neglected and Taylor-expanding
16) nearby t = t0 and s = s0 yields

ηc = z − z
( mtt

2σ2 (t − t0)2 + mss

2σ2 (s − s0)2 + . . .
)

, (17)

here mtt = ∂ttΨ , mss = ∂ssΨ are evaluated at (t0, s0). By setting ηc = h, Γ (z, h) follows from (17) as the area of the ellipse
f equation (t − t0)2/a2 + (s − s0)2/b2 = 1 with semi-axises a = σ

√
2 (z/h − 1) /mtt and b = σ

√
2 (z/h − 1) /mss, that

s

Γ (z, h) = π ab = 2πσ2

√
mttmss

z − h

h
= 2πσ2

√|Λ|
z − h

h
. (18)

From Fig. 3, on the plane η = h the excursion set Uη,h is the union of disjoint elliptical footprints of the local maxima
bove large threshold h, and from (18) its area is given by:

Am(h) =
∞∫
h

EXlm(z)Γ (z, h)dz = 2πσ2
√|Λ|

∞∫
h

EXlm(z)
z − h

h
dz, for h >> σ. (19)

On the other hand, at any threshold h, the area of the excursion set Uη,h is given by:

A(η ≥ h) = AS

∞∫
h

p(η = w)dw, (20)

here the probability density function (pdf) p(η) is Gaussian. Thus, for h > > σ we must have A(η ≥ h) = Am(h) and
19) and (20) lead to the following Volterra integral equation of first kind

∞∫
h

p(η = w)dw = 2πσ2

AS

√|Λ|

∞∫
h

EXlm(z)
z − h

h
dz, for h >> σ, (21)

or the unknown EXlm(z). The solution of (21) proceeds by differentiating both members of (21) twice with respect to
, and setting h = z. This yield, for z > > σ,
EXlm(z) = AS(2π)−3/2σ−2|Λ|1/2
( z

σ

)2
exp

(
− z2

2σ2

)
. (22)
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Using (22), the asymptotic leading term in (15), after integration by parts, is given by:

EXmax(h) ∼= AS(2π)−3/2σ−2|Λ|1/2 h

σ
exp

(
− h2

2σ2

)
, for h >> σ, (23)

which is identical to EC(Uη,h) of (11) if we set ξ = h/σ.

2. Oceanic sea states

We extend (11) to deal with the expected EC of excursion sets of spatial snapshots of oceanic sea states measured
by VWASS (see Fig. 1). To properly model oceanic nonlinearities we follow Tayfun [18] and define the dimensionless
nonlinear wave surface ζnl over S as:

ζnl = ζ + μ

2
(ζ2 − ζ̂2), (24)

where ζ = η/σ, ζ̂ is the Hilbert transform of ζ, and μ = λ3/3 is the wave steepness which relates to the skewness λ3 of
ζnl. We note that other nonlinear processes similar to (24), such as those in Cao [6], could be used to model ocean
waves as well. Hereafter, we adopt the Tayfun model (24) since it is physically based [18] and it has been proved to
accurately model wave extremes [8,9,19].

For ξ > > 1, the excursion regions, where ζnl ≥ ξ, include just isolated local maxima. So, the structure of the excursion
set can be related to the surface field locally to a maximum of ζnl with amplitude greater or equal to ξ. Assume that
this occurs at t = t0 and s = s0. Then, the surface locally around that maximum is described by the nonlinear Slepian
model defined by the conditional process [8,9,19]

ζnc = {ζnl(t, s) |ζnl(t0, s0) ≥ ξ } . (25)

Unfortunately, this does not have a straightforward explicit solution. Nonetheless, a simplification of (25) stems
from the particular structure of the nonlinear surface ζnl as follows. Note that, from (24) it is clear that the nonlinear
quadratic component of ζnl is phase-coupled to the extremes of the Gaussian ζ. So, a large maximum of ζnl greater or
equal to ξ occurs simultaneously when ζ itself is at a large maximum with an amplitude greater or equal to, say, ξ1.
Thus, for ξ1 > > 1, the conditional process (24) is equivalent to the simpler process [8,9]

ζnc = {ζnl(t, s) |ζ(t0, s0) ≥ ξ1 } = ξ1Ψ + μ

2
ξ2

1(Ψ2 − Ψ̂2), (26)

Fig. 4. Realization of the broadband nonlinear field ζnl/σ (linear spectrum is Gaussian, μ = 0.1).
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Fig. 5. Observed EC from the simulated field of Fig. 4 and the expected EC against the threshold h.

here Ψ is the covariance of ζ. From (26), the nonlinear crest occurs at t = t0 and s = s0, where Ψ = 1 and Ψ̂ = 0, and
ts amplitude is given by:

ξ = ξ1 + μ

2
ξ2

1 . (27)

Thus, the expected EC of the excursion set {ζnl ≥ ξ} equals that of the EC of the excursion set {ζ ≥ ξ1} of the
aussian ζ. By the variable transformation (27), from (11) it follows that

EC(Uζnl,ξ) = NS

−1 + √
(−1 + 2μξ

μ
exp

[
− (−1 + √

(−1 + 2μξ)2

2μ2

]
. (28)
Fig. 4 shows a particular realization of a broadband nonlinear ζnl simulated using (24) over an area AS = 1002σ2

overing roughly N = 436 waves (μ = 0.1). Further, Fig. 5 plots the observed EC against the threshold h. In the same
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Fig. 7. Same as in Fig. 6: observed and expected ECs over the positive range of the threshold h.

figure, the expected nonlinear Tayfun EC in (28) is compared against that Gaussian (11). The simulated data agree
well with the Tayfun model over the extremes whereas the Gaussian EC underestimates data for larger thresholds as
expected.

Consider now the VWASS reconstruction of the oceanic sea state shown in Fig. 1. The observed EC of the estimated
wave surface is plotted in Fig. 6 against the threshold h. For comparison, the expected theoretical ECs for the linear
and nonlinear case are also plotted. Clearly, the experimental data also fairly match the Tayfun EC model (28) over
the extremes (see also Fig. 7).

3. Conclusions

We have presented an application of a novel variational image sensor VWASS for the stereo reconstruction of wave
surfaces. VWASS has a significant advantage as a low-cost system in both installation and maintenance. Further, it
provides spatial and temporal data whose statistical content is richer than that of a time series retrieved from a buoy,
which is expensive to install and maintain. We believe that the proposed statistical analysis of oceanic sea states based
on Euler Characteristics is essential for a proper design of coastal and offshore structures. Indeed, Forristall [10] used
such theoretical results to explain the damages sometimes observed on the lower decks of platforms after storms
[11]. These may be due to a design that underestimates the largest crest height expected over the area nearby the
offshore structure. Thus, VWASS is a promising video technology that, combined with statistical tools based on Euler
Characteristics, provides reliable estimates of wave extremes over a given oceanic area.
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