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ABSTRACT

Theoretical distributions for describing the crest-to-trough
heights of linear waves are reviewed briefly. To explore the
effects of nonlinearities, these and two approximations that
follow from the Tayfun [28] model are generalized to nonlinear
waves via the second-order quasi-deterministic model of Fedele
and Arena [7]. The potential utility of Gram-Charlier type
approximations [17, 18, 29, 31] in representing the statistics of
nonlinear wave heights is also explored. All models and a fifth-
order Stokes-Rayleigh type model recently proposed by Dawson
[5] are compared with linear and nonlinear waves simulated
from the JONSWAP spectrum representative of long-crested
extreme seas, and also with observational data gathered during
two severe storms in the North Sea. The results indicate first
that nonlinearities do not appear to affect the crest-to-trough
wave heights significantly. Most models and their nonlinear
extensions yield similar and reasonable predictions of the data
trends observed. The present comparisons do not confirm the
efficacy of Gram-Charlier type approximations in modeling the
statistics of unusually large wave heights.

INTRODUCTION

Current interest in the mechanics and statistics of large
waves necessitates a re-examination of various theoretical forms
for describing the distribution of wave heights [6-8, 11-14, 17,
18, 20-24, 32, 33]. Over the years, a variety of numerical and
analytic wave-height distributions have been proposed. This
study will first consider an initial short list of just three
analytical models due to Naess [19], Boccotti [1] and Tayfun
[25, 28]. Of these, Naess’s model (N) has received wide
popularity. This is justifiably so due to its simple normalized
form despite the fact that previous comparisons [28] and those
to be presented here indicate that N consistently underestimates
the observed wave heights slightly. In contrast, Tayfun’s model
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(T) for large wave heights appears more complicated. However,
Boccotti’s model (B) is just about as simple as N, but has not
received the attention that it probably deserves. Thus, one of the
present objectives is to review these models briefly, including
two obvious and simple approximations (T1 & T2) that follow
from T. All are then compared with simulated waves and 9-h
measurements gathered from the TERN platform in 167 m water
depth in the northern North Sea during a severe storm in
January, 1993 [10].

Since large waves are nonlinear, the linear models
considered are subsequently modified to include the effects of
second-order nonlinearities, using the extension of Boccotti's [1]
linear quasi-deterministic theory to second-order waves by
Fedele and Arena [7]. These and the fifth-order Stokes-Rayleigh
model of Dawson [5] are then compared with simulated
nonlinear waves and the TERN data.

Although most oceanic data analyzed in the past as well as
the present TERN measurements clearly indicate that wave
heights are not noticeably affected by nonlinearities, the
analyses and comparisons in [12, 14, 17, 18, 20, 23] and several
other recent studies suggest that the occurrence of extreme wave
heights systematically larger than those typically predicted with
the conventional probability laws can be explained in terms of
third-order free-wave interactions and the attendant fourth-order
normalized cumulants of the sea surface. Thus, to include the
potential effects of such nonlinearities, two approximate Gram-
Charlier (G-C) distributions are also considered, guided by the
results in Tayfun and Lo [29] and Mori and Janssen [18]. The
potential effects of high-order nonlinearities and issues related
to the sampling properties of probability estimates are then
examined to a limited extent by way of comparisons of the G-C
type approximations to a second data set comprising five 20-min
measurements gathered during severe weather conditions from
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the Draupner platform in the central North Sea in 70 m water
depth in January, 1995 [11].

LINEAR MODELS
The exceedance distribution functions (EDF) of present
interest and applicable to the crest-to-trough wave height, say

H , scaled with the sea-surface rmsG have the general form:
E=Pr{H/c >h}=c,f(h)exp(—c,h*) (1)

The corresponding probability density function (PDF) easily
follows from —dE/dh. The parameters c,,c, and the

function f are summarized all in Table 1 for N, B, T, T1, T2
and the conventional Rayleigh (R) EDF. To elaborate these
further, letm,, p(t)and p"(t) represent, respectively, the
ordinary spectral moments and the auto-correlation coefficient
functions of the surface elevation and its temporal derivative.
The upper (+) and lower (-) envelopes of p(T) are

+r(t)=4/p’ +pP°, wherep is the Hilbert transform of
P [28]. On this basis, »=r(0.57,), a=pT*) and
b=p"(t*), where T,,= 21t (m, /m,) , and T* = time lag at
which the first minimum of p occurs [2, 19]. Obviously, all the

preceding parameters can be estimated either from a time series
of the surface or, somewhat more accurately and just as simply,
from the associated frequency spectrum [2, 9, 28].

It is noticed that only N, T2 and R are properly normalized
to unity at /4 = 0. Others are not since they are derived using
the asymptotic behavior of either the surface itself , as in B, or
its envelope, as in T and T1 both. So, the non-normalized EDFs
in the table are valid over the range of relatively large waves
whereas the normalized ones are valid for 4 > 0. Note further
that T1 corresponds to the lower bound EDF in [28]. Thus, T2
represents a normalized approximation to that, as N to B. As the
spectrum bandwidth approaches Zero, then
p —>—a—>b—1, and all EDFs assume the same limit
form of R. In general, 7 is similar to, but always slightly larger
than —a, leading to the result that T2 EDF> N EDF
invariably.

SECOND-ORDER WAVES
Suppose that the surface elevation measured from the mean
sea level at a fixed point and scaled with G is of the usual

second-order formn =M, +1,, and that a wave crest occurs at
timet =1, . Defining&, =1, (¢,)as the linear component of
that crest, the conditional mean of m,(¢, +T), given

n,(t,) =&, >>1,is described by [2, 15, 16, 21]

Model o c f(h)
1
N 1 —_— 1
41 —-a)
1+b 1
B T 1
J2b(1-a) | 4(1-a)
1 _ 2
T 1+r R 14 1 r2
2r 41 +r) 4rh
1 1+r ; {
2 41+r)
1
T2 1 S sm— 1
4 +r)
1
R 1 — 1
8

Table 1. Parameter definitions in different EDF models.
Myt +1)M, (1)) =&,) =&, p,(x) (2)

where p, =M, (¢, +T)N,(,)) = p =M +TINE,)),

correct to first-order in wave steepness and consistent the
second-order theory. The extension of this result to second-order
waves by Fedele and Arena [7] gives the conditional mean of

n as

(Nt +0)N () =E ) =¢, p(r>+%&f A()
3)

where& = second-order nonlinear crest height at ¢ o and,

M) =3 (n/(t)n(, +7))
3
26°

00
[Iw\y K" cosd™ + K™ cosd |dkdk'
kk'
) )
with & = wave-number vector, Y =wave-number spectrum,
L
¢ =(w+m')T, ® =angular frequency related to |k| via

the usual dispersion relationship, and K * = second-order
interaction kernels (see e.g. [10] ). It turns out that

M) < A(0) =X, =(n° ) =skewness coefficient of M [31,
32]. So, the nonlinear crest height at ¢, follows from Eq. (3)
with T =0 as
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1. o>
& =§1+g7v3§1 )
The wave trough, say, { immediately following the crest &

at ¢, occurs at timet =, +T *. From Eq. (3)

¢ =, p(r*>+% A@*) &’ ©

Thus, the crest-to-trough wave height # =& —C can be written
in the simple quadratic form

h=h1+%ﬁhf (7)
h =& (1-a)=

a = p(t*) as before, and

where first-order linear wave height,

1A -

B_3(1—a)2

®)

with A*=A(t*) for simplicity. For 2D deep-water waves,

K" =+|o’+0'*| /g so that A* as given by Eq. (4)
reduces to a double integral of the frequency spectrum, thus
simplifying 3 somewhat [7]. It can also be estimated from a
time series of 1 in a more practical but somewhat approximate
fashion.

Strictly, hl has the form implied by N only. However, all
the models in Table 1 can be used for the linear wave heights
just as well, including all Ts if the parameters A *and a are

replaced by A (0.57,) and 7, respectively. Numerical
computations with various JONSWAP-type spectra show that
these modifications introduce negligible errors in the
resulting 3 , and that 3 & 0.003 ~ 0.022 typically. The larger

values represent relatively wide-band spectra that decay

oc o *over high frequencies, and the smaller values imply
relatively narrow-band spectra.
It is noticed from Eq. (7) that

h 1
2 o1+=Bh 9
p S B ©

1
With B =0.003 ~ 0.004 representing a typical narrow-band

case, Eq. (9) gives 1.006 ~ 1.008< &1/ h, <1.036 ~ 1.048 for

4< h, <12. This result suggests that the effect of second-order

nonlinearities is simply rather small for narrow-band waves. The
situation is somewhat different for waves with wide-band
spectra, as will be shown later. Nonetheless, it is clear at this
point that the preceding model coupled with R as a model

for hl can not possibly explain unusually large waves attributed
to nonlinear interactions of second and higher order.
The EDF of /1 would follow from Eq. (1) simply as

E(h)=E(h)=c, f(h)exp(—c k') (10)

where h; = (=14+/1+2B & )/ P . The corresponding PDF
is then given by —(dE /dh,)(dh, /dh).

DAWSON MODEL
The EDF of scaled nonlinear wave heights in Dawson’s
fifth-order model (D) [5] is given in the present notation by

E(h) = exp(~20,°h%) [l -, h* —

107 L .
16 307217

h™ ]
(11)

whereol, =6 /H,; W, =c @’/ g = steepness parameter;

o =2n/<T >;and, H and<T > represent, respectively,

the significant wave height and mean zero-up-crossing period
derived from actual measurements. These definitions suggest
that D can not be used before the latter two statistics are actually
estimated from the data itself. So, D is not a predictive model in
the same sense as the other models considered here.

COMPARISONS
The simulation of 2D linear deep-water waves uses a
modified JONSWAP spectrum of the form

m, _ 5 y
S(@)=—"u""exp(-——) v*"q(u) (12)
®, 4u
where® , = spectral-peak frequency,y =peak enhancement
factor, 0.2<u=0/w, <10, g(u)=standard exponent
qu)=1 for u<4, and

q(u) = (u/4) " for u >4 . The “filter’ function g(u) helps
simulate second-order waves whose spectrum attenuates

function of Yy, and

aso ! approximately. This is consistent with the behavior of
oceanic spectra and the second-order results in [30].

~

In the present simulations, m, = 10 m’, ® ,=0.467 s

(T, = 13.44 5) andy =3.3. An ensemble of 40 linear and

nonlinear time series sampled at 5 Hz was simulated, following
an efficient approach elaborated in [27], but with linear random
spectral amplitudes whose rms values mimic the spectral shape
in Eq. (12). These yield altogether about 450,000 linear waves
first and subsequently 470,000 nonlinear waves. The linear and
nonlinear target spectra are compared with the spectra of linear
and nonlinear series simulated in Fig. 1.
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Fig. 1. Targeted and simulated spectra.

Prior to comparisons, consider the order statistics of a set of
n independent observations of / with the theoretical PDF and
EDF given by p and E, respectively. Rank-order these into the

order statistics hl > h2 > >hn. The PDF of & ; is given by
(seee.g. [3])

S p—

(/=Dl(n=nN!

E7(1-E)" p(x)

(13)
Regard £ now as a random variable, as it would be in
estimating it from the order statistics. Since dE = —p(x)dx

by definition, the PDF of E follows from the identity
Pl dE|= p, |dv] as
n!

Pp(E)=— : ;
(/=DIm=N!
where 0 < E <1 by definition The corresponding mean and
standard deviation are easily evaluated after some algebra as

E/'Q-E)" (14)

(Ey=—t (15)

1 (n—j+1
o, = [j(n—j+1) (16)
n+l n+2
Thus, the coefficient of variation & g =04 /{E) is given by
— 741
5, = u (17)
j(n+2)

Notice that 6 , =/ 1/ j for largen, given j << n. Thus, for
the largest few wave heights, the stability of the estimate E is

relatively poor. In particular, & ¢ of the largest wave height is

100% since G , is as large as E itself. And, it does not get

much better for the next few largest waves either. Clearly, the
larger the sample population 7, the more stable are the estimates
of E', but the stability characteristics of the largest group of
wave heights, say, the largest five or so remain persistently
poor. This result should be of some concern in interpreting the
frequency of occurrence associated with just a few exceptionally
large waves in oceanic measurements.

A comparison of the theoretical models with the simulated
wave heights in the linear case is given in Fig. 2 in a semi-
logarithmic form. This figure shows only R, B, T and TI
predictions as it is rather difficult to contrast with clarity all the
models in this type of conventional plots. Differences between
various models are more easily seen in a form popularized by

Forristall [9] and shown in Fig. 3, where the ratio /i /  is plotted

as a function of E, with r =,/—8 In(E) representing the

wave height that would be predicted by the Rayleigh law at the
same E level. Notice that Fig. 2 includes the comparisons for
453,416 wave heights derived from 40 independent simulations
pooled together and also 11,385 wave heights from the series
containing the largest wave height to demonstrate the effect of
the sample size 7 on both the estimates of £ and their stability.

The latter are indicated in the figure as bands of £ +G , in the
same colors as the simulated data. The high variability in the
estimates of F for the largest waves is obvious. This aside, the
simulated data trends follow the B, T and T1 predictions quite
well, as more clearly seen in Fig. 3. Among all models, B
appears to describe the relatively large wave heights most
accurately, except toward the very extreme tail where T and T1

NPT VB #W_ves Vs. VoTA L

10
-1
10} 1
2
107} 1
10 o
4
10} 1
R
T B-~T~-T1
5
10°F « 11,385waves E-o 3
453,416 waves
10-6 1 1 1 1 1 1 1

o 1 2 3 4 5 6 7 8 9 10 11

Fig. 2. Linear wave heights, theoretical predictions, and
stability of £ versus sample size .
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Fig. 3. Linear wave heights vs. theoretical models.

coalesce and represent the data somewhat better. R over predicts
the simulated wave heights by 7-8%, as is often noted. In
contrast, N under predicts the larger waves by about 2%. So
does T2 also but with errors less than 1%. In general, all the
models except R appear to describe the simulated data well over
the high wave range with maximum errors of about 2% or less.
Linear and nonlinear wave heights are compared in Fig. 4
with the predictions from Eq. (10) appropriate to the second-
order quasi-deterministic (Q-D) extensions of B, T, T1, T2 and
N. The latter are designated as B Q-D, T Q-D, etc. to
differentiate them from their linear limits. The same figure also

includes D of Eq. (11) with o, =0.263 and W, =0.167

estimated from the simulated nonlinear data. Evidently, second-
order nonlinearities tend to increase the relative frequency of
larger waves, and also amplify their heights somewhat. This

JONSWAP: linnear & non-linear waves vs. non-linear models.

1.04 T T T T T

B Q-D
1.02} T2 Q-D

1.00 R \ \

098t

N
~
~

0.961

0.941

0.92

453,416 linear waves
471,309 non-linear waves

0.90 %€ :
0 -1 -2 -3 -4 -5 -6
10 10 10 10 10 10 10
E
Fig. 4. Linear and nonlinear wave heights vs.

theoretical models.

tendency is predicted by all models except D. In this case, N Q-
D seems to best mimic the data trend over high waves.

TERN as a whole contains 3,173 waves. Analyzing these in
2 h segments reduces the count of wave heights scaled with the
segmental G to 3,157. These and the corresponding linear model
predictions are shown in Fig. 5. It is seen that in contrast with
the previous simulations, nonlinearities do not appear to have
any significant effect on the observed heights. The data trend is
described extremely well by B in general, and by T and T1 over
high waves. Most oceanic data should fit this pattern, consistent
with past comparisons [9]. None of the nonlinear Q-D type
models provide any predictions consistent with TERN. So, they
are not included in these comparisons, except for D with the

observed average values o ,, =0.257and 1, =0.119.

TERN data: wave heights vs. theoretical models.

1.04 ; . .
3,157 waves
B (1989) 6 =3.024m
1.02} T (1090) HS:_11.754 m T
R Ay=0.174
1.00
0.98}
1
<
096}
0.94}
092} E
0.90 : : —
0 -1 2 3 -4
10 10 10 10 10

E
Fig. 5. TERN: observed wave heights vs. linear models.

TERN: wave heights vs. theoretical models.

0
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n =347 waves

10 F n=3,157 waves
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10-4_ r=0.752 C gt 3
ap=0257 \ ]
1w, =0.119

10'5 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10

Fig. 6. TERN: effect of sample size n» on EDF
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To illustrate the effect of the sample size n on the EDF,
3,157 wave heights from TERN are shown again in Fig. 6 in a
comparison with 347 wave heights extracted from the third hour
of TERN containing the largest wave. Clearly, the shorter
hourly data overshoots B, T as well as R over the high wave
range where the variability of the EDF estimates is simply too
high. And, the apparent trend depicted by the larger wave
heights can lead to false conclusions about their relative
frequencies of occurrence.

GRAM-CHARLIER APPROXIMATIONS

The joint statistics of the nonlinear wave envelope and
phase were considered in [29, 31]. In the present notation, the
nonlinear surface elevation and its Hilbert transform are defined
by N =& cosb and N =& sinb , withE = wave envelope
scaled with G ; and, © = wave phase. Formally, 1| is the

principal value of

'[ (l‘ T) (18)

—00

And, a key point in the formulation is that if 1 is statistically
homogeneous, then

Lfmene=e) ;. _ )
h T

since the integrand is odd. This allows the joint PDF of 1 and

Tf to be expanded in Hermite polynomials more simply as (cf.
Eq. 11 in [29])

R 1 *(n +7%) 3
p(n’n): |: :: 3nn+::G4nn:|
27[ n=0

n=0
(20)

where F. and G comprise Hermite polynomials of

3—n,n 4—n,n
various orders and the normalized joint cumulants of 1 and Tf to
third and fourth order, respectively. The joint PDF of§ and 0
follows from a routine change of variables, and integrating out

O yields the marginal PDF and EDF of § as

pE)=te T [1+ A &

E@)=e * [14+AE3(E2 —4)] @)

~88°+8)] (21)

where

1
- _4 (7"40 + 27"22 + 7"04) (23)

and
Ay =(M*)-3 (24a)
Ay =’y -1 (24b)
Aoy = <ﬁ4> -3 (24¢)
are the fourth-order normalized cumulants that remain. All
of F ncontaining the third-order cumulants 7\,nm for which

n+m =23, and the terms that contain the fourth-order 7\,31
and A;, in G

If the definition of wave heights is changed to 4 = 2§ as

suggested previously in [23], the corresponding PDF and EDF
are given, respectively, by

4-n,, Integrate out.

h -

p(h)zzeg [1+%[k4—32h2+128)] (25)

1.

E(h)=e ® [1+ h(h2 16)] (26)

In theory, these results are quite general in the sense that they
are not conditioned on any restrictive assumptions except for
statistical homogeneity. But, the wave-height definition can
differ significantly from the crest-to-trough definition as it
ignores the variation of the wave envelope in the time interval
between a wave crest and the following wave trough. Formally,
the difference between the two definitions is of first-order in
spectral bandwidth, and that can be significant indeed for
relatively wide-band waves typically observed under oceanic
conditions.

For second-order narrow-band waves, the joint cumulants
will admit various approximations. For example, Tayfun and Lo
[29] express all three cumulants in Eq. (23) to second-order in
wave steepness and to first-order in spectral bandwidth. The

wave envelope is also scaled with & \/E . If allowance is made
for these, it can be verified that the final result given in Eq. (48)
of [29] is in fact the same as Eq. (21).

If the spectral bandwidth approaches zero, then Ay, = A,
and 3A,, =A,, correct to second-order in wave steepness

[29]. Under these conditions, / = 2& approximates the crest-
to-trough wave height, and Eq. (26) becomes
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,lhz

1
E(h)=e 3 [l+ﬁk4oh2(h2 ~-16)] 27)

Apparently, Mori and Yasuda [17] also draw on the Tayfun and
Lo [26] formulation. In what corresponds to Eq. (20) here, some
of their conclusions on the nature of the third and fourth-order
cumulants disagree with the results in [29]. However, these turn
out to be inconsequential as they all integrate out. And, the more
recent Eq. (46) derived in Mori and Janssen [18] is identical to
the preceding expression, referred to as a modified Edgeworth-
Rayleigh (MER) distribution. MER compares quite favorably
with the distribution of a relatively small population of about
350-450 waves generated in a 2D flume (see e.g. Fig. 1 in [18]).

To explore the Gram-Charlier type approximations, the
distribution of crest-to-trough wave heights gathered from the
Draupner platform in the central North Sea is compared in Fig.
7 with MER, R and also with Eq. (26), tagged as G-C. The same
data is also plotted in the Forristall style in Fig. 8, which also
includes the second-order Q-D forms of T1, T2, N, and also D.
Clearly, the observed population size is rather small, comprising
just 499 wave heights. These were scaled with the 20-min
segmental rms values. The latter differ by less than 5% from the
overall average & =2.922 m, suggesting that the sea state was
reasonably steady during these measurements. The G-C
prediction from Eq. (26) uses A =0.005 based on the overall
average values of the 20-min segmental fourth-order cumulants.
Not surprisingly, these cumulants do not relate to one another in
the manner they are expected to do in narrow-band seas. The
Draupner data is not narrow-band. One of the five 20-min time
series contains the much-celebrated New-Year-Wave, the

largest / value plotted in the figure. The MER distribution from
Eq. (27) was plotted using the overall average value A,, =

0.272 of all five 20-min data segments. Evidently, Fig. 8 shows
that the larger wave heights follow a trend between MER as an
upper bound and N Q-D as an approximate lower bound. The
sampling properties of EDFs indicate that definitive conclusions
about the nature and significance of the observed deviations
from the conventional models would require much larger
sample populations, and more systematic and pronounced
discrepancies than those displayed by the Draupner data. And,
such discrepancies should occur at higher probability levels, viz.
for h > 4, for establishing the relative validity of the G-C type
distributions, as in Fig. 1 of Mori and Janssen [18] and in
numerous results of Onorato et al. [20]. Nonetheless, the results
in Figs. 7 and 8 possibly warrant including MER and G-C type
distributions in future analyses and comparisons of oceanic data.

EXPECTED SHAPE OF LARGE WAVES

The expected shape of large linear waves has previously
been explored by Lindgren [15, 16], Boccotti [2], and Phillips et
al. [21]. The extensions to second-order waves are more recent
and include among others the closed-form formulations of
Fedele and Arena (F-A) [7] and Jensen [13, 14]. The F-A model
is exact for second-order waves, and Jensen’s model relies on

0 Draupner: wave heights vs. G-C approximations.
10 T
v n=499 waves
B
10 E
w10 1
A=0.005 E
avg h 4= 0.272
1071 @vgh,,=0.063 E- J
avg L, =0.113
o
4 Mp = Y-
10 . . .
0 2 4 6 8 10
h
Fig. 7. Draupner data vs. MER, G-C and R models.
b'fziyffé&’fa: weve Yy vs. DWTr I,
1.25 T “ T
avg6=2.922m +
1.20F avg -—-0.654 1
avg #= 0.693

15t B=0.020 (V) |
B=0.017 (Tl & T2)

T1 Q¥

Fig. 8. Draupner data vs. various nonlinear models.

Gram-Charlier type expansions. In F-A, the conditional mean of
second-order M (¢, +T), given that M(¢,)=& >>1 and

coincident with a wave crest, is described by Eq. (3). Some
applications of this result are in [7] and OMAE2006-92012.

One of Jensen’s [13] G-C type representations for the mean
shape of large waves has the form

Mty +1) (1) =8) =& p +%(&2 1) (s = P Aagg)

(29)
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where Ay, =M (£, )N (f, +T)) and A o= A, . Jensen [13]

indicates that the difference between the preceding
approximation and his more extensive expression involving

additional third-order moments diminishes for large& . As in the

F-A model of Eq. (3), the statistics p , A, and A, of the model

above, say J for brevity, can be derived directly from the surface
time series or from the associated spectrum. The latter approach
yields more accurate results, but it is also rather impractical as it
requires evaluating multiple integrals involving the surface
spectrum, as in F-A.

As a simpler alternative, consider the second-order narrow-
band (N-B) model [27, 32], viz.

1 A
n=nton My -1 (30)

where W =2A;/3 and M, =Hilbert transform of m,. It
requires some algebra coupled with the joint statistics of 1, and
M, to verify that the conditional mean of N (¢, +7T ), given that

N(#,) =& and coincident with a wave crest, is given by

Mm@, +1)In@E)=€)=pg,

FoRE DR -H)
@31
where P(t) =M, +T)N(%,)) and corresponds to the
Hilbert transform of p . In the actual results, both p and
[3 are defined in terms of 1, . But, they are equally well defined
in terms of M, correct to O(LL), and this is entirely consistent

with the second-order theory. Again, both p and P can be

derived from the surface time series directly or from the cosine
and sine transforms of the associated spectral estimates. In this
case, the latter approach not only yields more accurate
estimates, but it is also considerably easier than it can be
implemented in the F-A and J models.

Note that setting T = 0 in Eq. (31) will give

& =¢, +%u €’ -1 (32)

Consequently,

1
§1=E(—1+\/1+2u§+u2) (33)

on the right-hand side of Eq. (31).

For the New-Year-Wave, & =1, =6.204, n =0.137,

and il = 4.733 from Eq. (33). The actual profile scaled with

the corresponding segmentalc =2.981 m is plotted in Fig. 9.
The same figure also displays the mean N-B shape from Eq.

(31) using the spectral estimates of p and[ﬁ , and the
corresponding linear Q-D form [2, 15, 16, 21]

@ +1)In(t)=5) =5 p() (34)

It is seen that because the preceding expression ignores the
nonlinear nature of the actual profile, it does not depict the
magnitude and shape of the New-Year-Wave as well as the
nonlinear N-B model does. The N-B model approximates the
actual profile surprisingly well indeed. This is despite the fact
that the New-Year-Wave is a random realization from 3D
directional seas whereas the N-B profile is a statistical
expectation appropriate to 2D waves. There is a slight horizontal
distortion in the actual profile in that the front of the wave is
steeper than its rear, quite possibly because of surface stresses.
The low sampling rate (~2.13 Hz) of the Draupner data as a
fixed-point time series suggests that the actual wave is possibly
larger than the New-Year-Wave. All aside, Fig. 9 suggests that
the New-Year-Wave is likely to be a relatively “rare realization
of a typical population” as opposed to being “a typical
realization of a rare population ” [11].

As an additional comparison, Fig. 10 shows the New-Year-
Wave together with J from Eq. (29) and N-B from Eq. (31),

using in this caseA;, A, , P and P estimated from the 20-min

time series. Contrasting Figs. 9 and 10, it is seen that the N-B
profile in the latter figure does not compare with the observed
wave as favorably as the spectrum-based prediction in Fig. 9.
The J prediction does quite well, particularly around the large
wave crest, but it becomes more oscillatory than the observed
profile away from the wave crest. A more comprehensive
comparison of J given in [14] uses Jensen’s full formulation and
spectral expressions, and thus compares with the New-Year-
Wave noticeably better than the present J prediction does.

CONCLUDING REMARKS

The 2D linear simulations carried out here suggest that the
models of Boccotti [1] and Tayfun [25] yield similar
predictions. Both models, in particular, Boccotti’s describe the
data trends over relatively large waves quite accurately. The
widely popular Naess [16] model under predicts the linear wave
heights somewhat, as in previous comparisons [28]. Both
approximations (T1 & T2) of the Tayfun model are just as
simple as the Naess model, and they also describe the linear
wave heights slightly and consistently better than the Naess
model.

The 2D nonlinear simulations for narrow-band long-crested
seas lead to a re-distribution of wave heights biased slightly
toward the higher waves. For this extreme and possibly rather

8 Copyright © 2006 by ASME



Draupner New-Year-Wave vs. model predictions.
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Fig. 9. New-Year-Wave vs. mean linear Q-D and
nonlinear N-B profiles derived from spectral
estimates.

Draupner: New-Year-Wave vs. theoretical models based on time series.
6 0=2981 m New-Year-Wave -
1, =0412 nonlinear N-B
A 5 Ny = 6.204 nonlinear Jensen 7
=g
I
=
mn
+
=
\
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T (s)
Fig. 10. New-Year-Wave vs. mean nonlinear J and
N-B profiles derived from surface time series.

unrealistic case, the non-linear models considered describe the
data trend fairly satisfactorily, except for the Dawson [5] model.
Of all the nonlinear extensions considered, the Naess model
seems to best describe the simulated wave heights. However, the
analysis of TERN data does not indicate any similar nonlinear
effects, and the observed wave heights are described extremely
well by Boccotti’s model [1]. This in essence confirms previous
comparisons and is likely to be a typical result under oceanic
conditions [9].

Janssen [12] and Onorato et al. [20] demonstrate that the
heights of 2D narrow-band waves generated in wave flumes can
be amplified rather noticeably due to third-order free-wave

interactions. In particular, Onorato et al. [20] show that the
conventional linear and second-order probability laws do not
explain the statistics of wave heights and crests in the presence
of such interactions. And, Mori and Janssen [18] show that
wave heights under the same conditions are better described by
a modified Edgeworth-Rayleigh form of the Gram-Charlier
series dependent on the kurtosis of surface elevations. However,
whether if the same conclusions apply to oceanic waves remains
essentially unknown [20]. The results on directional simulations
in Socquet-Juglard [23] and related other studies indicate that
this may not be the case. The present analyses of the TERN and
Draupner data lead to a similar conclusion, and suggest that the
discrepancies observed under oceanic conditions are most likely
due to the sampling variability of estimates derived from
relatively short samples. Further, the present results from the
TERN and Draupner data do not provide any clear evidence for
the efficacy of the Gram-Charlier type expansions. In fact, some
recent comparisons in Cherneva et al. [4] clearly indicate that
such approximations do rather poorly in representing wave
height characteristics. Nonetheless, further comparisons with
larger populations of oceanic measurements would be needed to
resolve this issue unequivocally.

In the past, fixed-point measurements of the sea surface
served well in expanding our knowledge about oceanic waves,
but they may no longer be adequate in providing sufficiently
accurate data on the extremes of the surface. In theory, the
probability that a surface time series gathered at a fixed point
includes the true surface maxima and minima is essentially nil,
except when waves are atypically long-crested. Crest and trough
heights derived from such time series can and probably often do
seriously underestimate the actual values. This is a major point
of concern in assessing the validity of results derived from the
TERN and Draupner data, and possibly those in Cherneva et al.
[4]. Tt does not arise in the results of Mori and Janssen [18] and
Onorato et al. [20]. And, the question as to how well a particular
model does in describing the statistics of extremely large wave
heights or crests can not be fully resolved unless the sea surface
is measured in both time and space.
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