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Rogue waves in oceanic turbulence
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Abstract

A stochastic model of wave groups is presented to explain the occurrence of exceptionally large waves, usually referred to as rogue waves. The
model leads to the description of the non-Gaussian statistics of large waves in oceanic turbulence and to a new asymptotic distribution of their
crest heights in a form that generalizes the Tayfun model. The new model explains the unusually large crests observed in flume experiments of
narrow-band waves. However, comparisons with realistic oceanic measurements gathered in the North Sea during an intense storm indicate that
the generalized model agrees with the original Tayfun distribution.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Rogue waves are extreme events with potentially devastating
effects on offshore structures and ships. A rogue wave observed
at the Draupner platform in the North Sea during a storm in
January, 1995 provides evidence that such waves can occur
in the open ocean. Theoretical models offer various physical
mechanisms that can produce such focusing of wave energy in
a small area of the ocean. When nonlinearities are negligible,
ocean waves are usually modeled as Gaussian seas, as a linear
superimposition of a large number of elementary waves with
amplitudes related to a given spectrum and random phases.
In this case, large waves occur due to the dynamics of a
large stochastic wave group evolving linearly in accordance
with both the Slepian model [1] and the theory of quasi-
determinism of Boccotti [2]. Moreover, crests and troughs
are both Rayleigh-distributed. If second-order nonlinearities
are dominant, then the sea surface displays sharper narrower
crests and shallower more rounded troughs. As a result,
the skewness of surface elevations is positive [3], and wave
crests are distributed according to the Tayfun model [4–7]. If,
however, elementary waves also exchange energy nonlinearly
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via third-order four-wave resonances, narrow-band wave trains
can undergo intense modulational instability enhancing the
occurrence of larger waves [5,8] and, as a result, the distribution
of crest heights can deviate from the Tayfun model. This is
confirmed by both the wave-flume experiments in [6] and the
numerical simulations of the Dysthe equation [7], a special
case of the Zakharov equation [9] governing the dynamics of
weakly nonlinear water waves. The unusually large wave crests
observed in both the latter experiments and simulations are
explained reasonably well by a Gram–Charlier approximation
of the crest distribution recently proposed in [5]. This model
stems from the general Hermite series expansion of random
variables [3], and it relates to the physics of ocean waves only
through various statistics such as the skewness and kurtosis
of surface displacements. Could such type of Gram–Charlier
models for crests proceed directly from the basic equations
governing the ocean dynamics without assuming a priori
that the associated statistical structure is in the form of a
Gram–Charlier expansion in Hermite polynomials ? This paper
will explore this query by formulating a new stochastic model
of wave groups, describing the non-Gaussian statistics of
large waves under conditions referred to as oceanic or wave
turbulence (WT). The latter state defines the chaotic behavior
of a sea of weakly nonlinear-coupled dispersive wave trains
evolving in accordance with the Zakharov equation [9]. An
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initial Gaussian field is weakly modulated as nonlinearities
develop in time, leading to intermittency in the turbulent signal
due to the formation of sparse but intense coherent structures.
Large wave crests observed during these localized events may
explain the occurrence of rogue waves in open ocean. By
exploiting the weak nature of the nonlinear interactions of
O(µ2), with µ defined as a small parameter for wave steepness,
large crests are identified as those waves riding on top of large
groups. In fact, for time scales much larger than the typical
wave period TL , but much less than the nonlinear time scale
TN L ∼ O(µ−2), waves traveling in groups evolve mainly due
to the faster non-resonant second-order interactions while the
slower third-order resonant interactions modify and intensify
their amplitudes. Thus, the initial deviations from Gaussianity
observed in the statistical structure of large waves are revealed
before turbulence becomes strong and thus the WT theory
breaks down.

Herein, the WT theory is briefly reviewed first. Then,
some salient features of the concept of stochastic wave groups
relevant to WT are discussed, leading to a generalization of the
Tayfun model for the statistical distribution of crest heights over
large waves. Finally, comparisons with the lab data, numerical
simulations and wave measurements collected in the North Sea
are presented.

2. Oceanic turbulence

Consider weakly nonlinear random waves propagating in
water of uniform depth d in accordance with the Zakharov
equation for WT [9]. Define x = (x, y) as the horizontal
position vector on a plane coincident with the water mean level,
t the time, k as the horizontal wave-number vector, and ω is
the angular frequency related to k via gk tanh kd = ω2, with
k = |k|. Drawing upon [11], the sea surface displacement ζ
from the mean sea level is given, correct to O(µ2), by

ζ = ζ1 + ζ2, (1)

where the component ζ1, that accounts for four-wave resonant
interactions, is given by

ζ1 =

∫
b1(t)ei(θ1−Ω1t)dk1 + c.c. (2)

with θ1 = k1·x−ω1t and b1(t) = b(k1, t) a complex amplitude
whose perturbation expansion in small µ is given, correct to
O(µ2), by [11]

b1(t) = B1(1 + iµ2Ω1t)− 2µ2g [G(t; B)− G(0; B)] , (3)

where

Ω1 = 2ω1

∫
W 12

12 |A2|
2 dk2

is the renormalization frequency arising from the nonlinear
frequency shift due to self-interactions, and

G(t; B) =

∫
W 12

34

√
ω1

ω2ω3ω4
B̄2 B3 B4δ

12
34

exp
(
−iω12

34t
)

ω12
34

dk234,
is a function of the initial amplitudes B1 = B(k1) at t = 0, W 12
34

is the four-wave interaction kernel, ω12
34 = ω1 + ω2 − ω3 − ω4,

δ12
34 = δ (k1 + k2 − k3 − k4), and B̄ is the complex conjugate

of B. The correction ζ2 due to non-resonant interactions is given
by

ζ2 =

∫
b1b2

[
A+

12ei(θ1+θ2) + A−

12ei(θ1−θ2)
]

dk12 + c.c. (4)

where A+

12 = A±(k1,k2) are interaction coefficients [10].
Clearly 〈ζ 〉 = 0 and the variance

〈
ζ 2
〉
= σ 2, where 〈·〉 stands

for expected value.

3. Large crests in Gaussian seas

Neglect both resonant and non-resonant interactions so
that ζ1 is Gaussian. Further, assume that a large wave crest
of amplitude h is recorded at x = x0 and t = t0.
Boccotti [2] shows that as h/σ → ∞, with probability
approaching 1, the large crest occurs when a well-defined wave
group ζc passes through x0. The surface displacement of ζc
around x = x0 + X and t = t0 + T is asymptotically described
by the following conditional process

ζc = {ζ1(X, T )|ζ1(0, 0) = h} = ζdet +Rζ , (5)

as the sum of a deterministic part ζdet previously derived in
[1,2], and given by

ζdet = 〈ζ1(X, T )|ζ1(0, 0) = h〉 = h
Ψ
σ 2 ,

and a random residual Rζ that can be explicitly expressed as
(see [12] and also Appendix for details)

Rζ (X, T ) =
∆
σ 2

−ψ∗ Ψ(X, T )+ Ψ(X, T − T ∗)

1 − ψ∗2 + O(h−1),

where ∆ is a random variable of O(h0), and Ψ is the
space–time covariance of ζ1 given by

Ψ(X, T ) =

∫
S1 cos(k1·X − ω1T )dk1,

with S(k1) = the wave-spectral density with bandwidth ν,
and ψ∗

≡ ψ(T ∗)/ψ(0) with T ∗ being the abscissa of the
first local minimum of the time covariance ψ(T ) = Ψ(0, T ).
Since h and ∆ are random variables, ζc identifies a stochastic
wave group which evolves linearly through a wave background
represented by the residual Rζ . The largest crest occurs as
waves, growing from the tail of the group, reach its apex [2].
The dimensionless variables ξ = h/σ and ∆̃ = ∆/σ
are stochastically independent, as ξ → ∞. Moreover, ξ is
Rayleigh-distributed and ∆̃ is Gaussian with zero mean and
variance 1 − ψ∗2. In the following, it will be useful to express
ζc in the form

ζc =

∫
B̃1eiθ1 dk1 + c.c. (6)

where

B̃1 =

(
h − ∆

−ψ∗
+ eiω1T ∗

1 − ψ∗2

)
S1

2σ 2 e−i(k1·x0−ω1t0), (7)
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with S1 = S(k1). Hereafter, the concept of stochastic wave
groups is exploited to explain the occurrence of large waves
and the associated crest statistics in WT.

4. Large crests in oceanic turbulence

Consider the nonlinear surface ζ . Because of both the fast
non-resonant and slow resonant interactions, crest statistics
deviate from being Gaussian. Such deviations can be quantified
by drawing upon [13,14]. So, assuming that a large crest of
amplitude hnl is recorded at x = x0 and t = t0, ζ surrounding
that crest locally around x = x0 + X and t = t0 + T is given by
the nonlinear conditional process

ζnc = {ζ(X, T )|ζ(0, 0) = hnl} . (8)

If the waves were Gaussian, ζnc would be identical to the
wave group ζc in (5). For nonlinear waves, does ζnc still
represent a group forming a large crest with amplitude hnl?
The answer to this question is given by exploiting the weakly
nature of the nonlinear interactions of ζ . First, ignore four-wave
resonances in (1). Then, ζ1 is Gaussian and ζ is homogeneous
in space and time, but non-Gaussian. Under these conditions,
the crest statistics deviate from the Rayleigh distribution, but
they are well described by the Tayfun distribution [4,5,12]. For
long-crested narrow-band waves in deep water, as the spectral
bandwidth ν → 0, ζ assumes the simple form [4,5]

ζ = ζ1 +
µ

2σ

(
ζ 2

1 − ζ̂ 2
1

)
+ O (ν) , (9)

where the component ζ2 is explicitly identified in terms of ζ1,
µ = λ3/3 is related to the skewness coefficient λ3 =

〈
ζ 3
〉
/σ 3,

and ζ̂1 denotes the Hilbert transform of ζ1 with respect to time.
From (9) it is clear that the component ζ2 is phase-coupled
to the extremes of the Gaussian ζ1. So, a large crest of ζ
with amplitude hnl occurs simultaneously when ζ1 itself is at a
large crest with an amplitude, say h [14]. Thus, the conditional
process (8) is equivalent to the simpler process

ζnc = {ζ |ζ1 = ζc} , (10)

which explicitly follows, by replacing ζ1 in (9) with ζc of (6), as

ζnc = ζc +
µ

2σ

(
ζ 2

c − ζ̂ 2
c

)
. (11)

The amplitude hnl of the largest crest of ζnc occurs at x = x0
and t = t0, i.e. X = 0 and T = 0, when ζc = h and ζ̂c = 0, and
it is given in the Tayfun form as

ξmax = ξ +
µ

2
ξ2, (12)

where ξmax = hnl/σ [12]. Thus, the Tayfun (T) model for the
exceedance of the crest height ξmax readily follows from the
Rayleigh distribution of ξ as [4]

Pr {ξmax > λ} = exp

(
−
ξ2

0

2

)
, (13)

where ξ0 satisfies the quadratic equation

ξ0 +
µ

2
ξ2

0 = λ. (14)
For TL � t0 � TN L ∼ O(µ−2), third-order resonant
interactions develop and the wave field becomes nonstationary
in time but still homogeneous in space. Moreover, the crest
statistics deviates from the Tayfun model because the latter is
based on the particular non-resonant form (9) of the generic
ζ in (1). The deviations from the second-order theory can be
still quantified by exploiting the space–time evolution of wave
groups. In fact, the new group ζnc in (10) arising from the four-
wave resonances of narrow-band waves is given by

ζnc = ζd +
µ

2σ

(
ζ 2

d − ζ̂ 2
d

)
, (15)

where ζd originates from the modulation of the group ζc in (6)
from pure resonant interactions. An explicit expression for ζd
stems from ζ1 in (2) by replacing the initial values B1 of the
associated complex amplitude b1(t) in (3) with those values B̃1
of ζc in (7), that is

ζd =

∫
ei(θ1−Ω1t)

{
B̃1(1 + iµ2Ω1t)

− 2µ2
[
G(t; B̃)− G(0; B̃)

]}
dk1 + c.c. (16)

By a direct inspection of both (15) and (16) one can show that
the nonlinear group ζnc still focuses at x = x0 and t = t0 for
t0 � TN L with the largest crest amplitude ξmax given by

ξmax = ξ +
µ

2
ξ2

+ I(t0)ξ3
+A(t0)ξ2∆̃ + B(t0)ξ∆̃2, (17)

where O(∆̃3, µ3) terms have been neglected and the
dependence on x0 drops out because the field is homogeneous
in space but nonstationary in time. Moreover I, A and B are
multidimensional integrals in (k2,k3,k4) space. In particular,

I =

∫
Q12

34S2S3S4 dk234,

with

Q12
34 =

µ2g

2m2
0

W 12
34

√
ω1

ω2ω3ω4
δ12

34
1 − cos

(
ω12

34t0
)

ω12
34

,

and in the narrow-band limit, as ν → 0,

A ≈ O(ν), B = −3I
/(

1 − ψ∗2
)

+ O(ν).

Drawing upon [8], the coefficient I relates to the fourth-order
cumulant λ40 = µ4 − 3 of the wave surface as λ40 = 24I,
µ4 being the kurtosis. The probability of exceedance for the
nonlinear wave-crest height ξmax is given by

Pr {ξmax > λ} =

∫
∞

−∞

Pr
{
ξ > ξ∗ (λ)

∣∣∣∆̃} p∆̃d∆̃, (18)

where p∆̃ is the Gaussian density of ∆̃, ξ is Rayleigh-
distributed and its associated threshold ξ∗ satisfies ξmax = λ

in (17). Further, correct to O(ν), ξ∗ can be Taylor-expanded in
terms of ∆̃ starting from ξ = ξ0 of (14) as

ξ∗
= ξ0 −

λ40

24

(
ξ3

0 −
3ξ0∆̃2

1 − ψ∗2

)
+ O(∆̃3).
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Fig. 1. Crest exceedances from Tern in comparison with the Tayfun,
generalized Tayfun and Gram–Charlier models. Labels: R=Rayleigh, T =
Tayfun (µ), GT= generalized Tayfun (µ, λ40), GC= Gram–Charlier.

Ignoring terms of O(∆̃3) in the integration of (18) yields the
probability of exceedance for ξmax as

Pr {ξmax > λ} = exp
(

−
1
2
ξ2

0

)[
1 +

λ40

24
λ2
(
λ2

− 3
)]
,

correct to O(µ2). We shall refer to this asymptotic result, as the
generalized Tayfun (GT) distribution, which is very similar to
the Gram–Charlier (GC) approximation proposed in [5], viz.

Pr {ξmax > λ} = exp
(

−
1
2
ξ2

0

)[
1 +

λ40

24
λ2
(
λ2

− 4
)]
.

Note that for directional broadband waves, wave-number
quadruplets are in perfect resonance, i.e. ω12

34 = 0, and the
Tayfun model is recovered from both the GT and GC models
since λ40 = 0.

5. Comparisons

The data to be considered for comparisons here comprise
9 h of measurements gathered during a severe storm in January,
1993 with a Marex radar from the Tern platform located in
the northern North Sea in 167 m water depth. This data set
is hereafter simply referred to as Tern. Tern represents storm
seas under fairly steady conditions with broadband spectra
characterized with σ = 3.024 m, spectral bandwidth ν = 0.629
and λ3 = 0.174. A stable estimate of the steepness µ in terms
of spectral properties is given by µa = µm

(
1 − ν + ν2

)
[12].

In Fig. 1, the empirical distribution from Tern is compared
with the T (µ ' µa = 0.073), GT (µ ' µa = 0.073,
λ40 ' 0.023) and GC models respectively. It is observed
that both the GT and GC models do not appear to improve
significantly the predictions derived from the simpler T model.
For most practical applications, the differences between the
models appear insignificant, falling within a band of 1%–2%.
Consider now the case of unidirectional narrow-band waves.
The trend of the experimental wave-flume data of Fig. 2
in [6] is reproduced and shown in Fig. 2 here together with
Fig. 2. Crest-height distribution from wave-flume experiments (Fig. 2 in [6])
in comparison with the Tayfun, generalized Tayfun and Gram–Charlier models.
Labels are as for Fig. 1.

Fig. 3. Crest exceedances from numerical simulations (Fig. 9, case C in [7]) in
comparison with the Tayfun, generalized Tayfun and Gram–Charlier models.
Labels are as for Fig. 1.

the predictions based on GT, GC (µ ' 0.075, λ40 ' 0.80)
and T (µ ' 0.075) models. The original T model tends to
underestimate the data whereas both the GT and GC models
appear to explain data qualitatively well. The latter models also
describe well the crest-height distribution from Fig. 9 (case
C) of [7] obtained from numerical simulations of the Dysthe
equation, reproduced and shown in Fig. 3 in comparison with
the GT, GC (µ ' 0.07, λ40 ' 0.40) and T (µ ' 0.07) models.

6. Conclusions

A generalized Tayfun model for the statistics of crest
heights over large waves in oceanic turbulence is proposed. The
new crest model can explain the deviations from the Tayfun
distribution observed in flume experiments of narrow-band
waves. However, for realistic oceanic sea states the differences



F. Fedele / Physica D 237 (2008) 2127–2131 2131
between the predictions of the new model and the Tayfun
distribution appear negligible.
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Appendix

The wave profile ηc(T ) at X = 0 is expressed in terms of
an O(h) contribution ηdet(T ) = ζdet (0, T ) and the random
residual r(T ) = Rζ (0, T ) of O(h0) as

ηc(T ) = ηdet(T )+ r(T ),

where ηdet(T ) = ζdet(0, T ) = hψ(T )/σ 2. Drawing upon [15],
the effects of the residual r(T ) on ηc are now determined.
Specifically, as h/σ → ∞, with probability approaching 1,
the surface profile locally near a large crest tends to assume
the shape given by ηdet(T ) [1,2]. The latter represents a wave
profile with a crest of amplitude h at time T = 0 followed by
the absolute minimum of amplitude ηdet(T ∗) at T = T ∗, with
T ∗ being the abscissa of the first local minimum of ψ(T ). For
large values of h, the wave trough of the profile ηc(T ) following
the crest of amplitude h shall now occur at time T = T ∗

+ u,
with u being random. As h/σ → ∞, a crest of amplitude h that
occurs at T = 0, is followed after a time lag T ∗

+u by a trough,
and ηc(T ) and its first time derivative η̇c(T ) at T = T ∗ attain
values given, correct to O

(
h0
)
, by

ηc(T
∗) = ηdet(T

∗)+ ∆, η̇c(T
∗) = −η̈det(T

∗)u.

For linear Gaussian functions, an approximation to ηc(T )
satisfying the preceding conditions exactly is given by

ηc(T ) = ηdet(T )+
∆
σ 2

−ψ(T )ψ(T ∗)/σ 2
+ ψ(T − T ∗)

1 − ψ(T ∗)2/σ 4 ,
where u drops out ignoring terms of O(h−1). The straightfor-
ward extension of the above time formulation to the space–time
domain leads to (5).
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