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Abstract

Theoretical distributions proposed for describing the crest-to-trough heights of linear waves are reviewed briefly. To explore the effects

of nonlinearities, these are generalized to second-order waves, utilizing quasi-deterministic results on the expected shape of large waves.

The efficacy of Gram–Charlier models in describing the effects of third-order nonlinearities on the distributions of wave heights, crests

and troughs are examined in detail. All models and a fifth-order Stokes–Rayleigh type model recently proposed are compared with linear

and nonlinear waves simulated from the JONSWAP spectrum representative of long-crested extreme seas, and also with oceanic data

gathered in the North Sea. Uncertainties arising from the variability of probability estimates derived from sample populations of limited

size are considered. Ultimately, the comparisons show that nonlinearities do not have any discernable effect on the crest-to-trough

heights of oceanic waves. Most of the linear models considered yield similar and reasonable predictions of the observed data trends.

Gram–Charlier type distributions seem neither effective nor particularly useful in describing the statistics of large wave heights or crests

under oceanic conditions. However, they do surprisingly well in predicting unusually large wave heights and crests observed in some 2D

wave-flume experiments and 3D numerical simulations of long-crested narrow-band random waves.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Current interest in the mechanics and statistics of large
waves necessitates a re-examination of various theoretical
forms for describing the distributions of wave heights and
crests (see e.g. Haver and Andersen, 2000; Stansell, 2004;
Walker et al., 2004; Fedele and Arena, 2003, 2005; Janssen,
2005; Guedes Soares and Pascoal, 2005; Socquet-Juglard,
2005; Socquet-Juglard et al., 2005; Fedele, 2006; Onorato
et al., 2004, 2005, 2006; Tayfun, 2006). Over the years, a
variety of numerical, empirical and analytic wave height
and crest models have been proposed. Most of these have
been reviewed and compared previously (Forristall, 1984,
2000; Tayfun, 1990a, 2006). This study will first focus on
an initial short list of just three analytic crest-to-trough
e front matter r 2007 Elsevier Ltd. All rights reserved.
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wave-height models due to Tayfun (1981, 1990a), Naess
(1985) and Boccotti (1989). Of these, Naess’ model (N) has
received wide popularity. This is justifiably so due to its
simple functional form although previous comparisons
(Tayfun, 1990a) and those to be presented here indicate
that N underestimates the observed wave heights slightly.
Tayfun’s model (T) for large wave heights is consistently
more accurate than N. But, it is totally ignored apparently
because its functional form is more complex and thus less
amenable to analytical and/or practical applications than
N. However, Boccotti’s model (B) is just about as simple as
N, but has not received the attention it probably deserves
either. Thus, one of the present objectives is to review these
models briefly, including two obvious and simple approx-
imations that follow from T. The variability of probability
estimates derived from sample populations of limited size
and its relevance in interpreting the nature of exceptionally
large waves are also considered. Subsequently, all the linear
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models are compared with simulated linear waves and
oceanic data gathered during two severe storms in the
northern North Sea.

Since large waves are nonlinear, the linear models
considered are subsequently modified to include first the
effects of second-order nonlinearities, using the extension
of Boccotti’s (1989, 2000) linear quasi-deterministic theory
to second-order waves by Fedele and Arena (2005). The
resulting second-order models, a fifth-order Stokes–Ray-
leigh model recently proposed by Dawson (2004) and a
second-order version that follows from it are then
compared with simulated nonlinear waves representative
of extreme seas and also with the same North Sea data.

Nearly all past oceanic observations as well as the
present measurements gathered during two exceptionally
severe storms clearly indicate that wave heights are not
affected by nonlinearities. However, some recent analyses
by Janssen (2003, 2005), Mori and Janssen (2006), and
Onorato et al. (2004, 2005, 2006) based on the nonlinear
Schrödinger (NLS) equation and wave-flume experiments
show that occurrences of so-called ‘freak’ waves and wave
heights considerably larger than those typically predicted
with the conventional probability laws can be explained in
terms of third-order nonlinear interactions. Mori and
Janssen (2006) also contend that the distribution of such
wave heights is described by a modified form of the
Gram–Charlier (GC) series dependent solely on the
kurtosis of surface elevations. Dysthe et al. (2005),
Socquet-Juglard (2005) and Socquet-Juglard et al. (2005)
explore the effects of third-order nonlinearities further with
a series of intriguing 3D numerical simulations based on
the Dysthe equation, a higher-order form of the NLS
equation modified for directional waves with large steep-
ness and broader spectra (Dysthe, 1979; Trulsen and
Dysthe, 1996; Trulsen and Stansberg, 2001; Dysthe et al.,
2003). These confirm that an increased density of unusually
large waves does in fact appear in nearly 2D or long-
crested waves initially characterized by relatively narrow-
band spectra. This tends to occur in the absence of
dissipation and surface stresses, and as spectra change
relatively rapidly due to modulational instabilities toward
an equilibrium range proportional to o�4 over high
frequencies. However, the simulations representative of
the more realistic short-crested waves also show clearly
that similar spectral changes do not cause any discernable
aberrations, and the statistical characteristics of the free
surface elevations, wave heights and crests are described
surprisingly well with the presently available linear and
second-order probabilistic models.

The possibility that third-order nonlinearities can modify
the statistical structure of surface waves dramatically under
certain conditions also necessitates a re-examination of the
efficacy of GC type approximations in describing the
distributions of large wave heights, crests and troughs.
Thus, GC models appropriate to third-order waves are
considered, drawing on the formulations devised pre-
viously in Tayfun and Lo (1990) and Tayfun (1994,
2006), and extending these to wave crests and troughs.
All the resulting theoretical expressions are then compared
with the North Sea data, and also with some 3D
simulations from Socquet-Juglard et al. (2005) and 2D
wave-flume data from Onorato et al. (2004, 2005, 2006).

2. Linear waves

2.1. Definitions

Consider linear deep-water waves, and let S represent the
surface spectral density as a function of angular frequency
o. Denoting the ordinary moments of S by
mj ðj ¼ 0; 1; . . .Þ, s � m

1=2
0 corresponds to the root-mean-

square (r.m.s.) surface elevation, and om ¼ m1=m0,

Tm ¼ 2p=om, n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0m2=m2

1Þ � 1
q

and o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m0

p
¼

om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2
p

define the spectral average frequency, asso-
ciated wave period, spectral bandwidth and the mean zero
up-crossing frequency, respectively. Further, the r.m.s.
surface gradient is given by m � m

1=2
4 =g with g � 9:8 m=s2.

In general, m251 since m � Oð10�1Þ at most.
Next, let Z and _Z ¼ qZ=qt represent, respectively, the

surface elevation from the mean sea level and its time
derivative at a fixed point as a function of time t. Scaling Z
with s and _Z with m

1=2
2 ¼ so0 allows their normalized

autocorrelation kernels to be expressed as

rðtÞ ¼ hZðtÞZðtþ tÞi ¼ m�10

Z 1
0

SðoÞ cosðotÞ do, (1)

r00ðtÞ ¼ h_ZðtÞ_Zðtþ tÞi ¼ �m�12

Z 1
0

o2SðoÞ cosðotÞ do,

(2)

where r00 ¼ d2r=dt2. The upper ðþÞ and lower ð�Þ
envelopes of r are then given by

�rðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r̂2

q
, (3)

where

r̂ðtÞ ¼ hZðtÞẐðtþ tÞi ¼ m�10

Z 1
0

SðoÞ sinðotÞ do, (4)

and Ẑ; r̂ � Hilbert transforms of Z and r, respectively.
Now, define the dimensionless parameters

rm ¼ rðtmÞ; a ¼ rðt�Þ; b ¼ r00ðt�Þ, (5)

where tm ¼ Tm=2 for simplicity, and t� � the time lag at
which the first minimum of r occurs (Boccotti, 1989, 2000).
These parameters can all be estimated either from a time
series of surface elevations or, somewhat more accurately
and just as simply from the associated frequency spectrum.
For example, consider

SðoÞ ¼
m0

op

u�4 expð�1:25u�4ÞggðuÞ, (6)

whereop � spectral�peak frequency, g � peak�enhancement
coefficient, u ¼ o=op, and gðuÞ � standard JONSWAP
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exponent function of g. The spectral shape above represents
a slightly modified version of the well-known JONSWAP
form so as to mimic the u�4 type asymptotic behavior of
oceanic spectra for ub1. The normalized kernels r, r00,
envelopes �r, parameters rm, a; b, and the characteristic
times t� and tm corresponding to Eq. (6) with m0 �

10:72 m2, op � 0:467 rad=s (Tp � 2p=op � 13:44 s) and g ¼
3:3 are illustrated in Fig. 1.
2.2. Statistics

The exceedance distribution functions (EDF) describing
the linear crest-to-trough wave height H1 scaled with s
have the general form

E ¼ PrfH1=s4h1g ¼ c0f ðh1Þ expð�c1h
2
1Þ. (7)

The corresponding probability density functions (PDF)
follow simply from �dE=dh1. The parameters c0, c1 and
the function f are all given in Table 1 for N, B, T, T1, T2
and the conventional Rayleigh (R) law.
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Fig. 1. Principal parameters and functions in linear wave-height models.

Table 1

Parameter definitions in different EDF models of scaled linear wave

heights h1

Model (Reference) c0 c1 f ðh1Þ

N (Naess, 1985) 1 1
4ð1�aÞ

1

B (Boccotti, 1989) 1þbffiffiffiffiffiffiffiffiffiffiffiffi
2bð1�aÞ
p 1

4ð1�aÞ
1

T (Tayfun, 1990a)
ffiffiffiffiffiffiffiffiffi
1þrm
2rm

q
1

4ð1þrmÞ 1þ
1�r2m
4rmh2

1

T1 (Tayfun 1)a
ffiffiffiffiffiffiffiffiffi
1þrm
2rm

q
1

4ð1þrmÞ
1

T2 (Tayfun 2)a 1 1
4ð1þrmÞ

1

R (Rayleigh) 1 1=8 1

aPresent approximations to T.
Naess (1985) does not define the key parameter in his
distribution exactly. As a result, previous studies inter-
preted it in a variety of slightly different forms. These
include the present one in Table 1, which makes N
consistent with B. Note further that only N, T2 and R
are properly normalized to unity at h1 ¼ 0. Others are not
since they are derived using the asymptotic behavior of
either the surface itself, as in B, or its envelope, as in T and
T1 both. So, the non-normalized PDFs in the table are
valid over the range of relatively large waves, whereas the
normalized ones are valid for h1X0. T1 corresponds to the
lower-bound EDF in Tayfun (1990a). Thus, T2 is a
normalized approximation for T1, as N is for B. As
n! 0, then rm ! jaj ! b! 1, and all EDFs assume the
same limit form R. In general, rm is similar to but always
slightly larger than jaj so that for large h1, TXT14T24N
invariably.
The mean ðh1Þ1=n ¼ hh1jh14ðh1Þni, conditional on

h14ðh1Þn ¼ E�1ð1=nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc0nÞ=c1

p
, is given by

ðh1Þ1=n ¼ ðh1Þn þ
1

2
c0

ffiffiffiffiffi
p
c1

r
n erfcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc0nÞ

p
Þ; nX1, (8)

where erfc � complementary error function. This expres-
sion is valid for all models for which f ¼ 1. The conditional
mean ðh1Þ1=n corresponding to T with fa1 has a more
complicated form, and is given in Tayfun (1990a).
Consider now a sample population of N independent

wave heights ðh1Þj ðj ¼ 1; 2; . . . ;NÞ identically described by
the parent EDF in Eq. (7) with f ¼ 1. Let Z1 ¼

maxfðh1Þj; j ¼ 1; 2; . . . ;Ng. For large N, the EDF of Z1

is given by the Gumbel distribution (see e.g. Ang and Tang,
1984)

PrfZ14zg � E1;N ðzÞ ¼ exp½�expf�a1;N ðz� Z1;modeÞg�,

(9)

where

Z1;mode ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc0NÞ=c1

p
; a1;N ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 lnðc0NÞ

p
. (10)

The mean and standard deviation of Z1 then follow,
respectively, as

hZ1i ¼ Z1;mode þ
ge

a1;N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc0NÞ

c1

s
þ

ge

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1lnðc0NÞ

p , (11)

sZ1
¼

p

a1;N
ffiffiffi
6
p ¼

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6c1lnðc0NÞ

p , (12)

where ge ¼ 0:577216 . . . � Euler0s constant.
The preceding statistics are appropriate to long-crested

waves and to wave heights extracted from a surface time
series gathered at a fixed point. The spatial extreme value
analysis of directional waves requires significant modifica-
tions by way of Piterbarg’s asymptotic theorems for
homogeneous Gaussian processes over multi-dimensional
spaces (Piterbarg, 1996). Krogstad et al. (2004) present an
excellent interpretation and applications of Piterbarg’s
theorems to the extreme value analyses of simulated 3D



ARTICLE IN PRESS

100

n > 104

M.A. Tayfun, F. Fedele / Ocean Engineering 34 (2007) 1631–16491634
wave fields, both linear and nonlinear. Further extensions
and applications to linear and nonlinear wave heights and
crests are given in Socquet-Juglard (2005), Socquet-Juglard
et al. (2005) and Forristall (2005, 2006).
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Fig. 2. Coefficient of variation dE of EDF estimates for jth largest wave

height in n waves: (a) variation of dE with rank-order j and sample size n;

(b) dE for n4400 and jp10.
2.3. Stability of EDF estimates

Consider a set of n independent observations of a
random variable y distributed according to the PDF and
EDF given by p and E, respectively. Rank-order these into
the order statistics y14y24 � � �4yn. For the jth largest
value yj (see e.g. Borgman and Resio, 1982),

Prfxoyjpxþ dxg

¼ pjðxÞ dx ¼
n!

ðj � 1Þ!ðn� jÞ!
Ej�1ð1� EÞn�jpðxÞ dx. ð13Þ

Now, regard E as a random variable, as it would be in
estimating it from the order statistics. Since dE ¼ �pðxÞ dx

by definition, the PDF of E follows from pE jdEj ¼ pjjdxj

as

pEðEÞ ¼
n!

ðj � 1Þ!ðn� jÞ!
Ej�1ð1� EÞn�j. (14)

So, the simple moments of E are given by

hEmi ¼

Z 1

0

xmpEðxÞ dx

¼
n!ðmþ j � 1Þ!

ðj � 1Þ!ðmþ nÞ!
; m ¼ 0; 1; 2; . . . . ð15Þ

Thus, the mean and standard deviation are

hEi ¼
j

nþ 1
; sE ¼

1

nþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðn� j þ 1Þ

nþ 2

r
(16)

from which the coefficient of variation of E follows as

dE ¼
sE

hEi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� j þ 1

jðnþ 2Þ

s
�

ffiffiffi
1

j

s
(17)

for nbj. The exact form of Eq. (17) is plotted in the upper
part of Fig. 2 for 1pjp102 and various n. For jp10 and
nX400, dE is given by

ffiffiffiffiffiffiffi
1=j

p
quite accurately, as shown in

the lower part of the same figure. It is seen that for
1pjp10, dEX30% always. In particular, dE of the largest
wave height is 100% since sE is as large as the estimate E

itself. Clearly, the larger the sample population n, the more
stable are the estimates, but the stability characteristics of
the largest group of wave heights, say, the largest five or so
remain persistently poor. In general, the stability of
estimates with negligible bias is indicated with confidence
intervals. But, the simpler alternative and the one that will
be preferred here is to use the standard deviation sE

and define the upper and lower stability bands associated
with the estimate E � j=ðnþ 1Þ as E þ sE and E � sE ,
respectively.
2.4. Comparisons with linear waves from JONSWAP

simulations

The simulations for 2D linear and nonlinear deep-water
waves are based on

SðoÞ ¼
m0

op

u�4 expð�1:25u�4ÞggðuÞwðuÞ; 0:2pup10, (18)

where wðuÞ ¼ 1 for up4, and wðuÞ ¼ ð4=uÞ=4 for u44, and
all other variables and parameters are the same as in
Eq. (6). The ‘filter’wðuÞ helps to simulate second-order
waves whose spectral density attenuates as o�4 as in Eq. (6)
(Tayfun, 1990b; Tayfun and Fedele, 2006).
For the present linear comparisons, m0 � 10:15 m2, nffi

0:43 and Tp � 13:44 s, and an ensemble of 40 linear and
nonlinear time series sampled at 5Hz was simulated,
following an efficient approach described in Tayfun (1986)
but with linear random spectral amplitudes whose r.m.s.
values mimic the spectral shape in Eq. (18). These yield
altogether 453,416 linear waves first and, subsequently,
471,309 nonlinear waves whose spectral density closely
approximates Eq. (6) with m0 � 10:72 m2, nffi 0:63 and the
same Tp as before. For economy of space, all parameters
relevant to the simulated linear and nonlinear wave
heights, and their various theoretical predictions are inset
in the figures displaying a variety of results both for the
linear simulations here and for the later comparisons with
nonlinear simulations and oceanic measurements. These
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include the comparisons of EDFs of short and long
samples of wave heights, conditional moments and the
extreme value statistics.

The linear models R, T, N and the simulated EDFs are
compared in Fig. 3. The predictions from B, T1 and T2 are
nearly the same as T and cannot be differentiated
adequately in semi-logarithmic scales. The differences
between the models are seen more clearly in Fig. 4. This
figure and similar ones to follow later are constructed
based on an approach popularized by Forristall (1984),

plotting the ratio h1=hR versus E, where hR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8 lnðEÞ

p
and represents the wave height that would be predicted by
the Rayleigh law at the same E level. In this type of plots,
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Fig. 3. Linear simulations: exceedance distribution of scaled wave heights

compared to R, N, and T (ET1EB, and not shown).
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Fig. 5. Linear simulations: simulated conditional mean ðh1Þ1=n compared

to predictions from linear models.
the relative stability of the observed ratios h1=hR is

indicated in terms of the upper hþ1 =hR and lower h�1 =hR

bands, where h�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8 lnðE � sEÞ

p
. Among all the models

shown in Fig. 4, B describes relatively large wave heights
most accurately, except toward the very extreme tail where
T and T1 converge and also match the data slightly better.
R over predicts the large wave heights by 7–8%, as is often
noted. In contrast, N under predicts them about 2%. So
does T2 also, but by less than 1%. In general, all the
models except R seem to describe the simulated data
reasonably well over the high-wave range with maximum
errors of about 2% or less.
The theoretical conditional mean ðh1Þ1=n from Eq. (8) for

nX1 is compared with the simulated values for nX102 in
Fig. 5. Only the predictions from R, T1 and N are included
in this figure for clarity as B, T and T2 are all nearly
the same as T1. It is seen that the simulated means
are accurately described by all linear models except for R
and N.
The expected maximum wave height in N waves is shown

in Fig. 6 for NX103 in comparison with Eq. (11) for R, N
and B. The predictions from T1 and T2, not shown for
clarity, hardly differ from B. Also, for N fixed, the
simulated values represent the average values of the
maxima from 200 realizations, with each realization of
size N randomly drawn from 453,416 waves. As expected,
N under predicts the simulated data slightly. In contrast, B,
and thus T1 and T2 do follow the data trend quite closely.

3. Second-order waves

3.1. Quasi-deterministic (Q-D) model

Assume that the surface elevation measured from the
mean sea level at a fixed point and scaled with s is
expressed to OðmÞ in the usual second-order form Z ¼
Z1 þ Z2, where Z1 � first�order linear Gaussian component
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of Oð1Þ; and, Z2 � second�order nonlinear correction of
OðmÞ. The first- and second-order spectral densities and the
associated simple moments mj differ slightly, but these
differences are of Oðm2Þ and thus neglected in the following.

Next, suppose that a wave crest occurs at time t ¼ t0.
Defining x1 � Z1ðt0Þ as the linear component of that crest,
the conditional mean of Z1ðt0 þ tÞ, given Z1ðt0Þ ¼ x1b1,
has the form (Lindgren, 1970, 1972; Phillips et al., 1993;
Boccotti, 2000)

hZ1ðt0 þ tÞjZ1ðt0Þ ¼ x1i ¼ x1r1ðtÞ, (19)

where r1 ¼ hZ1ðt0ÞZ1ðt0 þ tÞi ¼ r ¼ hZðt0ÞZðt0 þ tÞi, correct
to OðmÞ. The extension of this result to second-order waves
by Fedele and Arena (2005) and Arena (2005) yields the
conditional mean of second-order Z as

hZðt0 þ tÞjZðt0Þ ¼ xþi ¼ x1rðtÞ þ 1
6
x21lðtÞ, (20)

where xþ � second�order nonlinear crest height at t0; and,

lðtÞ � 3hZ21ðt0ÞZðt0 þ tÞi

¼
3

2s3

Z
k

Z
k0
cc0½Kþcos fþ þ K�cos f�� dk dk0, ð21Þ

with k � wave�number vector; c ¼ cðkÞ � wave�number
spectrum; f� ¼ ðo� o0Þt; o � angular frequency, related
to k ¼ jkj via the usual dispersion relationship o2 ¼

gk tanh kd with d � mean water depth, and, K� �

second�order interaction kernels (see e.g. Forristall, 2000).
It may be noticed that lðtÞplð0Þ ¼ l3 ¼ hZ3i � skewness
coefficient of Z, correct to OðmÞ (Tayfun, 1994, 2006).
3.2. Wave heights and related parameters

The nonlinear crest height at t0 follows from Eqs. (20)
and (21) with t ¼ 0 as

xþ ¼ x1 þ 1
6
l3x

2
1. (22)
The wave trough, say x�, immediately following the crest
xþ at t0 occurs at time t ¼ t0 þ t�, and follows similarly
from Eqs. (20) and (21) with t ¼ t� as

x� ¼ x1rðt
�Þ þ 1

6lðt
�Þx21 ¼ ax1 þ 1

6l
�x21, (23)

with a ¼ rðt�Þ as defined before and l� ¼ lðt�Þ for brevity.
Thus, the nonlinear crest-to-trough wave height scaled with
s can be written in the quadratic form

h � xþ � x� ¼ h1 þ
1
2
bh2

1, (24)

where h1 ¼ x1ð1� aÞ � first�order linear wave height, and

b ¼
1

3

l3 � l�

ð1� aÞ2
. (25)

As n! 0 (a!�1), b! 0 and thus h! h1, leading to the
Rayleigh limit R appropriate to linear wave heights.
For long-crested waves in deep water, K� ¼ �jo2 �

o02j=g so that l� as given by Eq. (21) with t ¼ t� reduces to
a double integral, thus simplifying b somewhat (Fedele and
Arena, 2005). In the general case, it can also be estimated
from a time series of Z in a more practical but somewhat
approximate fashion. Evidently, the equivalent definition
of lðtÞ in Eq. (21) requires the linear Z1 associated with Z.
An approximate procedure for ‘linearizing’ Z is described in
Tayfun (1983, 1984) based on the narrow-band approx-
imation

Z1 � Z� aðZ2 � Ẑ2Þ, (26)

where a51 and represents a parameter chosen so as to
satisfy

hZ31i � hZ
3i � 3aðhZ4i � hZ2Ẑ2iÞ ¼ 0, (27)

correct to OðaÞ. Since the moments on the right-hand side
can be estimated from the observed series of Z and its
Hilbert transform, it follows that

a �
1

3

hZ3i

hZ4i � hZ2Ẑ2i
. (28)

Numerical computations with simulated nonlinear series
and oceanic measurements indicate that the preceding
approach, though rather simplistic, works reasonably well
and thus circumvents the four-fold integration implied by
Eq. (21) in the more general case of directional seas.
In theory, h1 has the form implied by B and N only.

However, all the models in Table 1 can be used for the
linear wave heights just as well, including all Ts if the
parameters l� and �a are replaced with lm ¼ lðtmÞ and rm

in Eq. (25). These alternatives will hereafter be differen-
tiated as bB for b based on l� and a, and as bT for b
based on lm and rm, respectively. Computations based on
the JONSWAP type spectra with variable bandwidth
show that bB and bT are nearly the same, and that
bB ffi bT � 0:00320:022. The effects of nonlinearities on
the surface statistics such as simple moments, cumulants,
and on the distributions of surface elevations, wave heights
and crests are most pronounced in long-crested waves such
as those simulated numerically or mechanically in wave
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flumes (Tayfun, 1994, 2006; Forristall, 2000). Thus, the
larger b values typify long-crested waves with broad
spectra, and the smaller values imply relatively narrow
spectra.

From Eq. (24),

h

h1
¼ 1þ

1

2
bh1. (29)

If b � 0:00320:004 as a typical narrow-band case, then
h=h1 � 1:01521:02 for h1 � 10. Thus, the effect of second-
order nonlinearities is likely to be rather small in narrow-
band seas, being at most 2% or less even for exceptionally
rare waves with heights as large as 10s. The situation is
only slightly different for waves with broader spectra, as
will be seen later. Nonetheless, it is clear at this point that
the preceding model coupled with R as a model for h1

cannot possibly explain unusually large waves in terms of
second- or higher-order nonlinearities.

3.3. Statistics

The EDF of h would be given by

EðhÞ ¼ c0f ðh1Þ expð�c1h2
1Þ; h1 ¼ ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bh

p
Þ=b.

(30)

The corresponding PDF then follows from
�ðdE=dh1Þðdh1=dhÞ. The conditional mean h1=n ¼

hhjh4hni is given in this case by

h1=n ¼ ðh1Þ1=n þ
b
2c1
½1þ lnðc0nÞ� (31a)

where

hn ¼ E�1ð1=nÞ ¼ ðh1Þn þ
b
2
ðh1Þ

2
n. (31b)

This result is valid for all models with f ¼ 1 in Table 1.
Further, the distribution of Z ¼ maxfhj; j ¼ 1; 2; . . . ;Ng is
of the same Gumbel form as in Eq. (9), with Z1 replaced by
Z. Thus,

Zmode ¼ Z1;modeð1þ
1
2
bZ1;modeÞ,

aN ¼ a1;N ð1� bZ1;modeÞ þOðb2Þ, ð32Þ

and lead to the mean and standard deviation of Z given by

hZi ¼ hZ1i þ
1

2c1
b½ge þ lnðc0NÞ� þOðb2Þ, (33)

sZ ¼ sZ1
½1þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc0NÞ=c1

p
� þOðb2Þ. (34)

As expected, these also converge to the linear results in
Eqs. (11) and (12) in the limit as b! 0.

3.4. Stokes–Rayleigh models

In a recent study, Dawson (2004) derived a nonlinear
wave-height distribution, using the fifth-order deterministic
Stokes theory as a model. Although the Stokes analogy in
this case is entirely heuristic in a probabilistic context, it is
worthwhile to review Dawson’s distribution briefly for
completeness and to explore a second-order model that
readily follows from it. In the present notation, the EDF of
scaled wave heights in Dawson’s model (D5) is given by

EðhÞ ¼ expð�2a2Dh2
Þ 1�

3

16
m2Dh2

�
107

3072
m4Dh4

� �
, (35)

where aD � s=Hs; mD ¼ sō2=g � steepness parameter;
ō ¼ 2p=hTi; and, Hs and hTi represent, respectively, the
significant wave height and mean zero up-crossing period
derived from actual measurements. As the latter two
statistics require a wave-by-wave analysis before Eq. (35)
can be used, D5 is not a predictive model in the same sense
as the other models considered here. Further, setting mD ¼
0 leads to the EDF of second-order wave heights in the
form (D2)

EðhÞ ¼ expð�2a2Dh2
Þ. (36)

The conditional moments and the extreme value
statistics associated with D5 cannot be obtained in a
closed form. Dawson (2004) obtains D5 by series inversion
from the Stokes fifth-order wave model and retains
only terms of Oðm4DÞ in the exponent of the EDF, as in
Eq. (35). Actually, the distribution of wave heights and
all the related conditional and extreme value statistics
can be derived from Dawson’s (2004) fifth-order model
without resorting to series inversion and other approxima-
tions. However, preliminary comparisons here showed
that the resulting statistics do not represent the simu-
lated and observed data trends as well as D5 does.
Finally, it is noted that in contrast with D5, D2 has the
same simple form as Eq. (1). So, all the conditional and
extreme value statistics associated with it readily follow
from Eqs. (8), (11) and (12) by setting c0 ¼ 1 and
c1 ¼ aD

ffiffiffi
2
p

.

3.5. Comparisons with nonlinear waves from JONSWAP

simulations

The comparisons of the EDF estimates for the crest-to-
trough heights of 471,309 simulated waves are shown in
Fig. 7. The quasi-deterministic extensions of the linear
models are identified with the suffix Q-D. For clarity
of presentation, this figure shows R, D2, D5 and only N
Q-D as the best apparent fit to large wave heights among
all the second-order Q-D models considered. Evidently,
both D2 and D5 tend to under predict the simulated data.
Further, D2 is not only simpler than D5, but it also
seems to describe the simulated data somewhat better than
D5 does.
The effects of sample size n on the EDF estimates and

their stability are illustrated in Fig. 8 for the simulation
series #13, which contains the largest scaled wave height
9.94 in Fig. 7. The upper part of the figure shows the
hourly section of the series with 411 waves including the
largest wave, and the lower part is for all 11,835 waves
in the series. Both cases also include R as a reference.
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A comparison of results in Figs. 7 and 8 clearly illustrates
that analyses based on limited data can easily lead to false
conclusions on the true nature of waves observed in a short
record. Clearly, the largest wave height 9.94 does not seem
out of place in Fig. 7 as it does in Fig. 8, particularly in the
upper part based on a rather short sample of just 411
waves. Thus, an outlier in a small sample population that
does not seemingly follow an established law as in Fig. 8
can in reality be a relatively rare realization of a typical
population, as in Fig. 7. Forristall (2005) also emphasizes
this very point amply under a more realistic setting, using
similar comparisons between small and large populations
of waves gathered from an offshore platform in the Gulf of
Mexico during Hurricane Ivan.
The simulated ratio h=hR is compared to the predictions

from all nonlinear models in Fig. 9. The linear simulations
of Fig. 4 are also replicated in this figure for contrast with
the nonlinear results. It is observed that second-order
effects tend to make the wave heights 2–4% larger. The
trend of the nonlinear data is best predicted by D2 over the
mid- to high-wave range and, apparently, by N Q-D
toward the extreme tail. Somewhat surprisingly, D5 seems
to predict the linear wave heights reasonably well, but it
under predicts the nonlinear heights.
The conditional mean h1=n from Eq. (31) for nX1 is

compared with the simulated values for nX102 in Fig. 10.
Only the predictions from R ð� B Q�DÞ, N Q-D and D2 are
included in this figure. The simulated data seem to follow
D2 for np103 approximately, and N Q-D for n4103.
The expected maximum wave height in N waves is

compared in Fig. 11 for NX103 with the predictions from
Eq. (33) for R, B Q-D (ET1 Q-D E T2 Q-D) and N Q-D.
As in the linear case, for N fixed, the simulated values
represent the average values of the maxima from 200
realizations, with each realization of size N randomly
chosen from 471,309 waves. The simulations are described
reasonably well by N Q-D. Discrepancies do appear for
N4105 and toward the extreme tail where larger samples
are needed for estimating the expected maxima more
reliably.
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4. Third-order nonlinearities and GC models

4.1. Wave envelopes

GC models represent approximations that arise from the
Taylor series expansion of the characteristic function of
random variables whose probability structure is not known
exactly. Their applications and relevance to weakly non-
linear sea-surface elevations and a variety of related
properties were first described by Longuet-Higgins (1963,
1964). However, his applications do not include nonlinear
wave envelopes and phases. The GC approximations for
the joint and marginal distributions of these were
formulated much later in Tayfun and Lo (1990). The
third- and fourth-order surface cumulants included in the
Tayfun–Lo model are OðmÞ and Oðm2Þ, respectively. Thus,
the formulation is theoretically valid for waves character-
ized with second- and third-order nonlinearities, although
Tayfun and Lo elaborate it explicitly for second-order
long-crested waves. Its application to second-order deep-
water waves in the most general case is described in Tayfun
(1994), correct to OðmÞ.
To review the underlying ideas in the Tayfun–Lo

formulation briefly, let Z ¼ x cos y and Ẑ ¼ x sin y, where
x ¼ ðZ2 þ Ẑ2Þ1=2 � wave envelope scaled with s; and,
y ¼ tan�1ðẐ=ZÞ � wave phase with a non-uniform distribu-
tion over an interval of 2p. In the original formulation,
the wave envelope is scaled with its r.m.s. value s

ffiffiffi
2
p

,
instead of just s as in the present case. And, a key point is
that if Z is statistically homogeneous, then Z and Ẑ are
orthogonal, viz.

hZẐi ¼ p�1
Z 1
�1

hZðtÞZðt� tÞit�1 dt ¼ 0 (37)

since the integrand is odd. This allows the joint PDF of Z
and Ẑ to be expanded as

pZẐ ¼
1

2p
e�ðZ

2þẐ2Þ=2 1þ
X3
j¼0

lð3�jÞj

ð3� jÞ!j!
H3�jðZÞHjðẐÞ

"

þ
X4
j¼0

lð4�jÞj

ð4� jÞ!j!
H4�jðZÞHjðẐÞ

#
, ð38Þ

where

lmn ¼ hZmẐn
i=smþn; mþ n ¼ 3, (39)

lmn ¼ hZmẐn
i=smþn þ ð�1Þm=2ðm� 1Þðn� 1Þ; mþ n ¼ 4,

(40)

represent the third- and fourth-order normalized joint
cumulants of Z and Ẑ, respectively; and, HjðxÞ � jth�order
Hermite polynomial. For x arbitrary, H0 ¼ 1, H1 ¼ x,
H2 ¼ x2 � 1, H3 ¼ x3 � 3x and H4 ¼ x4 � 6x2 þ 3.
The joint PDF of x and y follows from a change of

variables in the form pxy ¼ xpZẐ. In particular, integrating
Eq. (38) with respect to y yields the marginal PDF of x by
itself as

pxðxÞ ¼ xe�x2=2 1þ
L
64
ðx4 � 8x2 þ 8Þ

� �
, (41)

where

L ¼ l40 þ 2l22 þ l04. (42)

Notice that the third-order joint cumulants lmn for which
mþ n ¼ 3, and the fourth-order l31 and l31 do not
appear in the preceding results since all terms that contain
these cumulants drop out in integrating Eq. (38) with
respect to y.
The EDF corresponding to Eq. (41) is

ExðxÞ ¼

Z 1
x

px dx ¼ e�x2=2 1þ
L
64

x2ðx2 � 4Þ

� �
. (43)
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To Oðm0Þ and OðmÞ, x is Rayleigh-distributed since L is
Oðm2Þ and ignored. This is consistent with the general
second-order random wave model in Tayfun (1994). For
the same model,

l03 ¼ l21 ¼ 0; l30 ¼ 3l12, (44)

as a general result correct to OðmÞ.
At the next order of approximation, the fourth-order

cumulants come into play. The nature of the latter
statistics is not known in the most general case. Various
approximations appropriate to so-called quasi-Gaussian
and long-crested narrow-band waves are possible, but such
approximations tend to lack generality. For second-order
long-crested waves, Tayfun and Lo (1990) express all three
joint cumulants in Eq. (42) to Oðm2nÞ. In the present
notation, they are given by

l40 ¼ 12ð1� 2g0Þm2m; l22 ¼ 4ð1� g0Þm
2
m; l04 ¼ 12m2m,

(45)

where mm � skm ¼ so2
m=g ¼ OðmÞ and g0 ¼ OðnÞ is a non-

negative dimensionless parameter, defined explicitly else-
where (Tayfun, 1986; Tayfun and Lo, 1990). It reflects the
effect of the spectral bandwidth on the fourth-order
cumulants. For long-crested waves with JONSWAP type
spectra, 0og0o1

2
. Hence,

l40o3l22ol04. (46)

As n! 0, g0! 0 also, leading to l40 ¼ 3l22 and l04 ¼ l40,
correct to Oðm2Þ. These in turn simplify Eq. (42) to

L � Lapp ¼ 8l40=3. (47)

Finally, if Eqs. (41) and (45) are combined, the resulting
expression will be identical to the wave envelope PDF
given in Eq. (48) in Tayfun and Lo (1990), except for
apparent differences due to the additional factor

ffiffiffi
2
p

used in
scaling the envelope heights with s

ffiffiffi
2
p

in their case.

4.2. Wave heights

Let wave heights be measured as 2x, as suggested some
years ago (Tayfun, 1983). In essence, 2x represents an
upper bound to crest-to-trough wave heights. Its PDF and
EDF follow from Eqs. (41) and (43) simply as

p2xðxÞ ¼
x

4
e�x2=8 1þ

L
1024
ðx4 � 32x2 þ 128Þ

� �
, (48)

E2xðxÞ ¼ e�x2=8 1þ
L

1024
x2ðx2 � 16Þ

� �
. (49)

Generally, 2x differs appreciably from the crest-to-
trough definition h because it ignores the variation of the
wave envelope over the time interval between a wave crest
and the following trough in a typical zero up-crossing
cycle. That variation is OðnÞ to the leading order, and can
be rather significant for relatively broad-band oceanic
waves. However, if n! 0 then hffi 2x. Assuming further
that l40 ffi 3l22 and l04 ffi l40 as in the case of long-crested
second-order waves, Eq. (49) becomes

EhðxÞ ¼ e�x2=8 1þ
l40
384

x2ðx2 � 16Þ

� �
. (50)

Mori and Yasuda (2002) also draw on the Tayfun–Lo
formulation, albeit without an appropriate acknowledge-
ment or a correct citation. Their interpretations of the
nature of some joint cumulants are also somewhat flawed
and thus disagree with the results in Tayfun and Lo (1990).
However, these turn out to be inconsequential as they all
drop out of the eventual results, and the expression more
recently given in Mori and Janssen (2006) is identical to
Eq. (50) above, referred to as a modified Edgeworth–Ray-
leigh (MER) distribution. Clearly, MER either assumes
narrow-band second-order waves or requires that l04 ¼ l40
and l40 ¼ 3l22. The GC model of Eqs. (48) and (49) does
neither. Thus, it is more general than and thus preferable
to MER.
An envelope-based definition of wave heights that is

statistically consistent with the crest-to-trough definition is
given by

hm ¼ xðtÞ þ xðtþ Tm=2Þ, (51)

where Tm stands for the spectral average period, as in
Section 2.1. It is easily shown that hm ¼ 2xþOðnÞ ¼ hþ

Oðn2Þ and that it represents the definition that leads to T
(Tayfun, 1981, 1990a). Thus, for linear or second-order
nonlinear waves, empirical estimates of wave-height EDFs
derived from wave-envelope series via Eq. (51) should be
consistent with models such as T, T1, T2 and their
nonlinear Q-D forms, respectively. In analyzing his 3D
nonlinear simulations, Socquet-Juglard (2005) employs a
definition of wave heights similar to hm correctly, instead of
2x. He also prefers to use the spectral peak period Tp. Since
Tp4Tm in general, the resulting population of observed
wave heights can display a relative increase in the mid
range and a corresponding deficiency toward the high-wave
extreme, as seen in some EDF plots of Socquet-Juglard
(2005). The opposite tends to occur with Tm. The correct
choice really depends on the specific application consid-
ered. For instance, if the distribution of wave heights over
high waves is of interest, the optimal choice would be T� ¼

hT jhb1i � mean zero up-crossing wave period, condi-
tional on hb1. In general, TmoT�oTp, and T� is
approximated reasonably well by (Tayfun, 1993)

T� � hT jhb1i ffi ½1þ n2ð1þ n2Þ�3=2�Tm. (52)

The quantitative accuracy of GC type approximations
can be unpredictable. In practice, inaccuracies can arise not
only from the unstable nature of fourth-order cumulants
and thus the difficulty of estimating them from observa-
tional data reliably, but they can also arise from the
possibility that a particular GC approximation assumed
may be inappropriate to the physical situation considered.
As an example, consider Fig. 12 showing the variability of
fourth-order cumulants derived as half-hourly running
averages at 1min intervals from the linear and nonlinear
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simulation series #13. This figure is based on two 6.5-h
coincident segments containing the largest waves. The total
duration of both series is about 29.2 h actually. In theory,
l40 ¼ l22 ¼ l04 ¼ 0 for linear waves since Z and Ẑ are
jointly Gaussian. The overall averages l40 ffi �0:01 and
l22 ¼ l04 ffi 0:00 derived from the complete linear series
#13 satisfy this requirement and are thus consistent with
the Gaussian norms for the most part. But, the local
averages vary widely and tend to get amplified by high
waves, as clearly seen around the largest waves with
max h ¼ 9:75 in the linear case and max h ¼ 9:94 in the
corresponding nonlinear case. Note further that the overall
averages l40 ffi 0:10; l22 ffi 0:12 and l04 ffi 0:62 derived
from the nonlinear series #13 as a whole are not in
conformity with or even suggestive of the narrow-band
limits l04 ¼ l40 and l40 ¼ 3l22 quite simply because the
nonlinear simulations for which nffi 0:63 do not represent
narrow-band waves. But, they confirm the inequalities in
Eq. (46). Under such conditions, crest-to-trough wave
heights h and the associated 2x can differ significantly. This
is clearly seen in Fig. 13, showing the EDF estimates
derived from the nonlinear series #1 in a comparison with
the predictions from the GC model of Eq. (49) with L �
0:015 ðl40 � 0:11; l22 � 0:12; l04 � 0:61Þ, Eq. (50) with
l40 � 0:11, and N Q-D. Evidently, the simulated crest-to-
trough heights follow the N Q-D model quite closely. In
contrast, the wave heights derived from the corresponding
2x series are much larger. And, they tend to follow the GC
model of Eq. (49) better, but not with consistent
quantitative accuracy over the entire range of simulations.
In comparison, the GC prediction from Eq. (50) does
rather poorly. For the same series, Fig. 14 shows the EDF
estimates derived from the associated wave envelope via
Eq. (51) with Tm ffi 9:83 s in a comparison with T1 Q-D
(ET Q-D) and the same GC predictions as in Fig. 13. In
this case, the simulations compare with T1 Q-D more
favorably, as expected.
Fourth-order joint cumulants and thus L are typically

estimated from a surface time series and its Hilbert
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transform. Alternately, L can also be derived from the
corresponding wave envelopes because if Eq. (43) is valid,
then the mean of x assumes the form

hxi ¼

ffiffiffi
p
2

r
1�

L
64

� �
. (53)

Given hxi, the alternate estimate for L follows from this
simply as

L ¼ 64 1�

ffiffiffi
2

p

r
hxi

 !
. (54)

A similar consideration in terms of higher moments hxj
i for

j41 is not particularly useful since hx2i ¼ 2 and does not
depend on L, and the higher moments are less stable than
hxi.

4.3. Wave crests and troughs

The upper ðþxÞ and lower ð�xÞ wave envelopes represent
bounds to the surface elevations, in particular, to wave
crests and troughs. Clearly, þx and �x are symmetrical
with respect to the mean water level, and no third-order
joint or marginal cumulant representing the effect of
second-order nonlinearities to OðmÞ appears in Eqs. (41)
and (43). Thus, the resulting probability structure does not
correctly describe the vertical asymmetry of the nonlinear
surface in terms of higher crests and shallower troughs. In
theory, the upper and lower envelope distributions appro-
priate to wave crest and trough segments can be derived
from the joint distribution of x and y, conditional on Z40
and Zp0, respectively. To OðmÞ, this approach was first
elaborated in Tayfun (1994). It was later corrected and
applied to oceanic waves in Al-Humoud et al. (2002).
Further applications to shallow-water waves are more
recent and given in Cherneva et al. (2005). There is no
difficulty in extending the same approach to Oðm2Þ with the
joint PDF pxy in the present case, but this will not be
pursued here as the quantitative accuracy of the resulting
distributions tend to be somewhat poor (Al-Humoud et al.,
2002; Cherneva et al., 2005). This is largely because such
distributions tend to describe all local maxima and minima
over wave crests and troughs, respectively, instead of just
their global values. An alternate but somewhat elaborate
third-order theory for describing large wave heights and
crests is described in Fedele and Tayfun (2006) based on
the concept of stochastic wave groups.

Consider instead a slightly different but a far simpler
approach for introducing the surface skewness into
Eq. (43) directly. To OðmÞ, the representation for the
second-order upper wave envelope is given by (Tayfun,
1980, 2006)

xþ ¼ x1 þ 1
2
m�x21, (55)

where x1 � the first-order wave envelope, Rayleigh-dis-
tributed with the EDF expð�x21=2Þ, and, m� ¼ OðmÞ and
represents a parameter for wave steepness. In theory,
m� � l30=3, thus rendering Eq. (55) identical to Eq. (22). In
general though, m� can be defined in a variety of slightly
different forms (Tayfun, 2006). For instance, if the
principal interest is in the distribution of wave crests over
large waves, then m� ¼ so2

m=g as a somewhat conservative
upper bound. More accurately,

m� � mF2 ¼ 16
a32
b2

G
3

b2

� �
�

1

4

ffiffiffi
p
2

r
, (56)

where a2 and b2 represent the dimensionless parameters in
Forristall’s Weibull fit to the crests of long-crested random
waves in deep water (Forristall, 2000). To OðmÞ, the EDF of
xþ is then given by

Exþ ¼ exp �
1

2m�2
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m�x

p
Þ
2

� �
. (57)

The modified GC EDF for the upper wave envelope and
appropriate to nonlinear wave crests follows to Oðm2Þ from
simply replacing the leading term expð�x2=2Þ in Eq. (43)
with Eq. (57) as

Exþ ¼ exp �
1

2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m�x
p

Þ

m�

� �2
" #

1þ
L
64

x2ðx2 � 4Þ

� �
.

(58)

No further modifications are needed in this expression
since L is Oðm2Þ already.
The modified GC EDF of wave troughs follows the same

approach by considering first the second-order narrow-
band representation for nonlinear wave troughs, viz.

x� ¼ x1 � 1
2
m�x21. (59)

To avoid negative amplitudes, which arise when x142=m�,
this expression is inverted to rewrite it as

x1 ¼ x�ð1þ 1
2
m�x�Þ. (60)

The corresponding EDF is then given by

Ex� ¼ exp½�1
2
x2ð1þ 1

2
m�xÞ2�. (61)

Thus, the modified GC EDF for the lower wave envelope
coincident with wave troughs similarly follows to Oðm2Þ
from replacing the leading term expð�x2=2Þ in Eq. (43)
with the preceding EDF as

Ex� ¼ exp �
1

2
x2 1þ

1

2
m�x

� �2
" #

1þ
L
64

x2ðx2 � 4Þ

� �
. (62)

Henceforth, Eqs. (57) and (61) describing crest and trough
amplitudes to OðmÞ will be referred to as the NB models,
and Eqs. (58) and (62) modified with the NB models for the
same variables correct to Oðm2Þ as the NB–GC models.

5. Comparisons with North Sea data

The data utilized for the present comparisons are in the
form of fixed-point surface measurements gathered from
the TERN platform in 167m depth in the northern North
Sea during two severe storms, one in January 1992 and the
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other in January 1993. The duration of the 1992 measure-
ments is 8 h, comprising three segments separated by 2-h
intervals. The 1993 data represent continuous measure-
ments, 9 h in total duration. Both data have been sampled
at 5.12Hz. Forristall (2000) elaborates the quality and
statistical nature of both of these measurements, and refers
to them as Tern 92 and Tern 93a. Here, they will be
designated as TERN 92 and TERN 93, respectively.
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Fig. 15. Temporal variation of s=savg in (a) TERN 93 and (b) TERN 92

derived from 1
2
�h running averages at 1-min intervals (thick), and

corresponding 1
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�h segmental values (thin) used for scaling crest-to-trough

wave heights, crests and troughs. Insets: savg � overall averages.
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Fig. 16. TERN 93: ratios of third- and fourth-order cumulants derived f
The temporal variations of s=savg, where savg � the
overall r.m.s. value derived from each data set as a
whole, are displayed in the upper part of Fig. 15 for TERN
93 and in the lower part for TERN 92. Evidently, neither
record represents a stationary sea state, particularly TERN
92. To compensate for non-stationarity at least partially,
all wave heights, crests and troughs extracted via wave-by-
wave analyses from both data are scaled with the half-
hourly segmental r.m.s. values shown in Fig. 15. This
process yields a total of 6153 zero up-crossing waves for the
two data sets combined, hereafter referred to as TERN
93+93.
The nature of the cumulants of interest to the present

analysis, how these relate to one another and the
comparisons between their estimates derived by using
half-hourly running averages at 5min intervals from
the surface time series and/or from the corresponding
envelope series are all briefly summarized in Figs. 16
and 17 for the continuous TERN 93 measurements. The
corresponding results for TERN 92 are similar and thus
not shown. It is noticed in Fig. 16 that l30=l12 ¼ 3:000.
The same result follows from TERN 92 also. Because
this particular relationship is known to be valid for
second-order waves and correct to OðmÞ (Tayfun, 1994), it
gives the first indication that third-order nonlinearities of
Oðm2Þ may not have any significance in TERN 92 and
TERN 93, although both cases represent rather severe
directional seas with significant wave heights larger than
14m during the peak storm conditions. On average,
l40 ¼ �0:065; l22 ¼ �0:029, and l04 ¼ �0:107 for TERN
93 as a whole. As for TERN 92, l40 ¼ 0:096; l22 ¼ 0:044,
and l04 ¼ 0:167 as overall averages. Finally, for the
TERN 92+93 composite, l40 ¼ 0:0234; l22 ¼ 0:0089, and
l04 ¼ 0:0290. All these also suggest that third- or higher-
order nonlinearities are not particularly significant for the
TERN data.
5 6 7 8 9
 (h)

rom 1
2
�h running averages at 5-min intervals. Inset: overall averages.
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For TERN 93, the comparisons of L ¼ l40 þ 2l22 þ l04
derived from the time series of Z and Ẑ, and from the
corresponding mean hxi of the wave-envelope series via
Eq. (54) are shown in the upper part of Fig. 17. The lower
part of the same figure shows a similar comparison between
the same L estimates and Lapp from Eq. (47). Both sets
of comparisons support the validity of the approxi-
mations Lx and Lapp for L reasonably well for most of
TERN 93. However, the comparisons between the
corresponding overall averages appear to contradict this
conclusion.

The comparison between the PDF estimates for 6153
crest-to-trough wave heights in TERN 92+93 and R is
shown in the upper part of Fig. 18, using linear scales to
emphasize the bimodal nature of the observed PDF. The
semi-logarithmic comparison of the same PDF estimates in
the lower part of Fig. 18 with R, D2, N and T2 is intended
to show the tail-end behavior over high waves more clearly.
In this case, all the theoretical forms considered appear to
describe the trend of the observed PDF reasonably well for
h43.

The comparison between the EDF estimates of scaled
crest-to-trough wave heights in TERN 92+93 and the
predictions from the GC model of Eq. (49), R, B and T is in
Fig. 19, excluding other linear and nonlinear models for
clarity. The comparison that includes all the present linear
models as well as D2, D5 and GC is shown in Fig. 20 more
clearly in terms of the observed ratio h=hR. Both cases
indicate that neither R nor GC represents the data well at
all. The observed EDF is best described by B, if allowance
is made for the high variability of the largest ten or so
values of the observed ratio h=hR. Since the data trend is so
well predicted by B, no other second-order nonlinear model
of Q-D type is included in these comparisons.
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The effects of sample size n on the EDF estimates and
their stability are shown in Fig. 21 for n ¼ 347 waves
extracted from the third hourly segment of TERN 93
containing the largest of all waves in TERN 92+93. The
rest of the figure contains the same theoretical predictions
as those in Fig. 18 for comparison. Clearly, Fig. 21 shows
that some large wave heights, specifically the largest eight
are underestimated rather noticeably by B. The same wave
heights also overshoot even the more conservative predic-
tions from both R and GC. The specifics of the largest
wave nearly conform to some heuristic definitions of a
‘freak’ wave. It has a relative frequency of occurrence of 1
in 347 in Fig. 21. In contrast, Fig. 19 for the same wave
yields a frequency of 1 in 6153 waves, a far more reliable
and realistic estimate but widely different from the
previous one. All this really illustrates, as the Hurricane
Ivan example in Forristall (2005) does but only somewhat
more dramatically, that the statistically unstable nature of
estimates based on short records can lead to false
conclusions about the nature and the relative frequency
of occurrence of unusually large waves. This is a point of
concern for the comparisons in Fig. 3 of Mori and Yasuda
(2002) and also in Fig. 1 of Mori and Janssen (2006). Both
cases rely on wave-flume data comprising less than 450
waves to demonstrate that the observed wave-height EDFs
deviate noticeably from R due to third-order nonlinearities.
But, the comparisons based on much larger samples from
oceanic measurements also given in Fig. 4 of Mori and
Yasuda (2002) clearly contradict this, with the observed
data showing by and large the same deviations from R as in
the present TERN results.
The linear and nonlinear conditional means from

Eqs. (8) and (31) are shown in Fig. 22 in a comparison
with the estimates from TERN 92+93 for nX10. Only the
predictions from R, D2, B and B Q-D are shown in this
figure since BE all Ts and B Q-D Eall T Q-D’s and are
thus not shown for clarity. N Q-D overestimates the data
trend somewhat, falling slightly below B Q-D, and N
underestimates it and lies just below the B model and the
observed data. Evidently, the data trend compares very
favorably with the linear predictions ðh1Þ1=n that follow
from Eq. (8) for B (ETET1ET2). Some discrepancy
appears toward the extreme tail as data become sparse.
For TERN 92+93, the expected maxima of N wave

heights for NX102 are compared in Fig. 23 with the linear
predictions from Eqs. (11) for R, B (ET1), T2, N and D2
as a nonlinear example. The predictions from second-order
nonlinear Q-D models tend to overestimate the TERN
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92+93 values rather noticeably, as D2 does, and are thus
excluded from the comparison. The data trend seems to be
described reasonably well by all linear theoretical predic-
tions from B, T1, T2 and N.

The comparisons of the EDF estimates for the scaled
wave crest and trough amplitudes in TERN 92+93 with
the theoretical predictions from the NB models of Eqs. (57)
and (61), and from the NB–GC models of Eqs. (58) and
(62) are shown in Fig. 24. Clearly, NB and NB–GC
predictions are nearly the same for wave troughs. The
NB–GC model over predicts the crest heights over large
waves slightly, but this is largely inconsequential in this
case because of the large variability of the estimates toward
the extreme tail. So, these results also confirm that third- or
higher-order nonlinearities do not affect the statistics of
wave crest and troughs in TERN 92+93. The observed
deviations from R appear to be entirely due to second-
order bound harmonics, and are thus described quite
accurately with the second-order NB model.
6. Comparison with 3D simulations (Socquet-Juglard et al.,

2005)

Dysthe et al. (2005), Socquet-Juglard (2005) and
Socquet-Juglard et al. (2005) performed 3D numerical
simulations based on the Dysthe equation (Dysthe, 1979;
Trulsen and Dysthe, 1996), a modified form of the NLS
equation appropriate to directional deep-water waves
characterized by large steepness and broader spectra. The
simulation results clearly show that second-order nonlinea-
rities are dominant for realistic directional distributions,
and that the surface-elevation and crest-height statistics are
described surprisingly well with the second-order narrow-
band model (Tayfun, 1980). They also show that third-
order four-wave interactions largely affect long-crested
narrow-band waves, causing their statistics to deviate from
the conventional linear and second-order models of R and
NB type. Case C in Fig. 9 of Socquet-Juglard (2005)
demonstrates such a case for the statistics of wave crests. It
is reproduced in Fig. 25 here and compared with the
predictions from R, NB from Eq. (57) and NB–GC from
Eq. (58). In this case, m� � 0:07, l40 � 0:4, and it is
assumed that l22 ffi l40=3 and l04 ffi l40 since no estimates
for l22 and l04 are given. It is evident that, whereas the
simulated data trend deviates from R and NB rather
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noticeably, it is described reasonably well by the present
NB–GC model.

7. Comparisons with wave-flume data (Onorato et al., 2004,

2005)

The analyses and comparisons in Onorato et al. (2004,
2005, 2006), Janssen (2005), and Mori and Janssen (2006)
with 2D waves mechanically generated in wave flumes
indicate that wave heights and crests significantly larger
than those typically observed under oceanic conditions do
occur, provided that the waves initially generated at the
wave maker are sufficiently narrow-band. The observed
distributions of such wave heights and crests deviate
substantially from both the conventional Rayleigh law
and the second-order NB model. This is explained in terms
of the Benjamin–Feir type modulational instabilities
associated with the NLS equation. It appears that
whenever the Benjamin–Feir index is sufficiently large,
the third-order four-wave quasi-resonant interactions
between free modes become at least as significant as the
second-order interactions due to bound modes, thus
amplifying wave heights and crests further and well beyond
the typical trends observed under oceanic conditions. All
this should be reflected eventually in the third- and fourth-
order marginal and joint cumulants, but the emphasis is
placed without exception on l40 only. As none of the
above-referenced studies provide any data or estimates on
l22 and l04, it is not possible to ascertain if the
approximations l40 ffi 3l22 and l04 ffi l40 really hold.
But, this will be so assumed in what follows as in the
previous comparison with the 3D simulations from the
Dysthe equation.

As was mentioned previously, the wave-flume data
reported in Mori and Yasuda (2002) and Mori and Janssen
(2006) are rather sparse for reliable comparisons. In
contrast, those reported in Onorato et al. (2004, 2005,
2006) represent relatively large samples. As a particularly
striking case, the EDF estimates of scaled wave crests in
Fig. 2 of Onorato et al. (2005) are reproduced and shown in
Fig. 26 here together with the predictions from R, NB
wave-crest model of Eq. (57) and the corresponding
NB–GC model from Eq. (58). It is seen that the observed
wave crests deviate dramatically from R and NB, but they
do appear to be described by NB–GC reasonably well.

A somewhat similar result on the EDF estimates for
wave heights from the same wave-flume experiments is
given in Fig. 6 of Onorato et al. (2004). Using the present
notation, it is replicated in Fig. 27 here and compared to R
and GC from Eq. (49). The estimates l40 ffi 0:80 and l40 ffi
1:00 inset in Figs. 26 and 27, respectively, are from Fig. 2 in
Onorato et al. (2004). Further, note that the predictions
from Eqs. (49) and (50) are the same in this case because of
the assumption that l40 ffi 3l22 and l04 ffi l40. All this
aside, it is seen that, whereas the observed data overshoots
R dramatically again as in the previous case of Fig. 26, it is
described by the GC model quite favorably. This result
supports the Mori–Janssen contention that the distribution
of wave heights is described well by MER, the modified
form of the GC series dependent only on l40, provided that
waves are long-crested and narrow-band.

8. Conclusions

The results from the present 2D linear simulations
suggest that the models of Boccotti (1989) and Tayfun
(1990a) yield similar predictions, and describe the data
trends over relatively large waves quite accurately. The
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widely popular Naess (1985) model under predicts the
linear wave heights somewhat, as in past comparisons
(Tayfun, 1990a). Both approximations T1 and T2 of the
Tayfun (1990a) model are just as simple as the Naess
model, and they also describe the linear wave heights
slightly and consistently better.

The 2D nonlinear simulations for narrow-band long-
crested seas lead to a re-distribution of wave heights
toward slightly higher waves. For this extreme and
plausibly rather unrealistic case, the nonlinear models
considered do not describe the simulated data trends quite
satisfactorily. Of all the nonlinear extensions considered,
the quasi-deterministic form of the Naess model and
Dawson’s second-order Stokes–Rayleigh model seem to
best describe the simulated wave heights. However, the
analysis of the TERN data does not indicate any similar
nonlinear effects whatsoever, and the observed wave
heights are described extremely well by Boccotti’s linear
model. This result and those in Forristall (2005) decisively
demonstrate that second- and higher-order nonlinearities
do not affect the heights of large oceanic waves. And, an
unusually large or freak wave in a short record that does
not seem to follow an established probability law can
usually be explained as a relatively rare occurrence in the
same record when observed sufficiently longer.

Mori and Janssen (2006) and Onorato et al. (2004, 2005,
2006) show that the heights of 2D narrow-band waves
generated in wave flumes can be amplified rather notice-
ably due to third-order nonlinear interactions. In particu-
lar, Onorato et al. (2006) illustrate that the conventional
linear and second-order probability laws do not explain the
observed statistics of wave heights and crests in the
presence of such interactions. Evidently, the third-order
GC models considered here seem to describe such cases
reasonably well. Undoubtedly, further comparisons would
be needed to ascertain if similarly favorable comparisons
can be replicated under different conditions. More
significant, however, is whether if the third-order non-
linearities and thus the GC type models have any real
relevance to oceanic waves. The analyses of the TERN data
indicate that this is not the case at all, and that the
observed statistics are described extremely well by the
linear models for wave heights and the second-order
narrow-band models for wave crests and troughs. The
nature of results from third-order directional simulations
of Dysthe et al. (2005), Socquet-Juglard (2005) and
Socquet-Juglard et al. (2005) lends strong support to this
conclusion. Nevertheless, further comparisons with even
larger populations of oceanic measurements of the sea
surface as a function of both space and time may be needed
to resolve this issue unequivocally and once for all.
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