NOVEL NUMERICAL TECHNIQUES FOR PROBLEMS IN ENGINEERING SCIENCE

A Dissertation Presented

by

Francesco Fedele

 \mathbf{to}

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Civil and Environmental Engineering

February, 2005

Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy, Specializing in Civil and Environmental Engineering

Dissertation Examination Committee:

Advisor Jeffrey P. Laible, Ph.D. .

co-Advisor Margaret Eppstein, Ph.D.

George F. Pinder, Ph.D.

Chairperson Darren L. Hitt, Ph.D.

Vice President for Research
and Dean of Graduate Studies

Date: December 2, 2004

Abstract

In this thesis novel numerical techniques are proposed for application to different problems in engineering science. Three categories of numerical techniques are investigated: collocation methods, finite element methods (FEM) and boundary element methods (BEM).

In the context of collocation methods a new numerical technique called LOCOM (LOcalized COllocation Method) has been proposed. This method is able to reduce the degrees of freedom of the classical Hermite collocation to one single degree for each collocation node, still maintaining higher order accuracy. This new methodology has been applied to an existing Hermite Collocation Fortran code that solves multiphase flow problems.

In the context of the Finite Element Method, a special form of the Petrov-Galerkin method has been formulated for the sub-grid stabilization of advectiondiffusion partial differential equations on triangular meshes. This new method is able to damp out the spurious oscillations occurring near a sharp front when the standard finite element method is applied. An adjoint FEM has been developed in the context of fluorescence tomography and a Galerkin technique has been formulated to investigate the hydrodynamic stability of pulsatile Poiseuille flow in a pipe.

Finally, a 3D boundary element method is presented for the numerical solution of general coupled elliptic differential equations. This methodology has application in some areas of optical tomography where small heterogeneities immersed in a homogenous domain need to be detected.

Citations

Material from this dissertation has been published in the following form:

Fedele F., Hitt D., Prabhu R.D. Revisiting the stability of Pulsatile pipe flow. European Journal of Mechanics - B/Fluids 2004, in press

Fedele F., Melissa Mckay, G. F. Pinder and Guarnaccia J. A single-degree of freedom Hermite Collocation for multi-phase flow and transport in porous media. Inter. Journal Numerical methods in fluids 44:1337-1354, 2004

Fedele F., Laible J. P. & Eppstein M. Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation " Journal of Computational physics Vol. 187, Issue 2, pp. 597-619, 2002

Fedele F.,Laible J. P., Pinder G. F. Localized-Adjoint-Finite-Element-Method for Sub-Grid Stabilization of Convection-dominated Transport on a Triangular Mesh. XIV International Conference on Computational Methods in Water Resources June 23-28, 2002 Delft University of Technology The Netherlands

Material from this dissertation has been submitted for publication to Journal of Computational Physics on 07/01/04 in the following form:

Fedele F., Laible J. P., A. Godavarty, E. M. Sevick-Muraka, Eppstein M. Fluorescence Photon migration by the Boundary Element Method.

Acknowledgement

First of all I want to thank my advisor, Jeffrey Laible, for introducing and assisting me in the fascinating world of Finite Element Methods and George Pinder who trusted my capabilities and gave me a chance to study here in the United States. I also thank Tullio Tucciarelli for giving me the opportunity to study abroad after I finished my master in Italy and meet George Pinder as a visiting student here at UVM. I also want to thank all the people I worked with during these years: Darren Hitt with whom I revisited the world of fluid mechanics, R. D. Prabhu with whom I discovered the beautiful world of fluid turbulence, Jianke Yang with whom I discovered the fascinating world of nonlinear equations and Igor Najfeld whose advice and suggestions have been extremely helpful to me. I'm also grateful to my co-advisor Margaret Eppstein for her support and help in a difficult moment I had during my studies. I also want to name some of my friends and colleagues in Burlington: Adam, Ceyhun, Edward, Metin and Simon. They have been very close to me. Grazie sopratutto a mia mamma Maria Anna, mio nonno Rocco, mio fratello Marco e mia sorella Giovanna per esser stati sempre vicino a me anche a grande distanza da casa. In ricordo di mio padre, dedico questa tesi a lui. Se fosse ancora in vita sarebbe molto orgoglioso di suo figlio. Il conseguimento del dottorato di ricerca e' la piu' grande soddisfazione che avrei potuto dargli dopo tutte le umiliazioni subite prima che morisse.

Table of Contents

	Cita	ations	ii
	Ack	nowledgements	iii
	\mathbf{List}	of Figures	vii
	\mathbf{List}	of Tables	ix
1	Intr 1.1 1.2 1.3 1.4 1.5	oduction Collocation Methods Stabilized Finite Element Methods Adjoint Methods Galerkin Methods for hydrodynamics stability problems Boundary Element Methods	1 4 9 14 20 23
2	Sing	gle-degree of freedom Hermite collocation for multiphase flow	
	and	transport in porous media	32
	2.1	Introduction	33
	2.2	Theoretical Formulation	34
		2.2.1 LOcalized COllocation Method (LOCOM)	35
		2.2.2 Approximation of Derivatives	36
		2.2.3 Reduction of the Residual Equations	37
		2.2.4 Consistency-based Hermite derivative approximations	37
	2.3	The advection-diffusion equation	39
		2.3.1 The optimal scheme	41
	2.4	Computational Examples	46
		2.4.1 Transport of a Gaussian hill	46
		2.4.2 Multiphase Flow and Transport	48
	2.5	Conclusion	52
	2.6	Bibliography	53
3	Loc	alized-Adjoint-Finite-Element-Method (LAFEM) for sub-grid sta	I-
	biliz	ation of advection-dominated transport on a triangular mesh	63
	3.1		64
	3.2	THE PETROV-GALERKIN METHOD	65
		3.2.1 Linear elements	69

		3.2.2 Quadratic elements	70
	3.3	BENCHMARK PROBLEMS	71
	3.4	CONCLUSIONS	72
	3.5	APPENDIX	73
	3.6	Bibliography	76
4	Cou	pled complex adjoint sensitivities for frequency-domain fluores	-
	cene	ce tomography: Theory	78
	4.1	Introduction	79
	4.2	Governing equations	81
	4.3	Adjoint sensitivity formulation	83
		4.3.1 Matrix notation for the coupled equations	84
		4.3.2 Perturbation equations	84
		4.3.3 Analytical Adjoint sensitivities	85
	4.4	Finite Element Formulation	89
		4.4.1 FEM for Governing Equations of Excitation and Florescence .	89
		4.4.2 FEM for Adjoint Equations of Excitation and Florescence	92
		4.4.3 Finite Element formulation of the analytical Sensitivity of Φ_x	
		and Φ_m	93
		4.4.4 Discrete adjoint sensitivities	94
	4.5	Summary	96
			00
	4.6	Bibliography	98
_	4.6	Bibliography	98
5	4.6 Rev	Bibliography	98 102
5	4.6 Rev 5.1	Bibliography	98 102 103
5	4.6 Rev 5.1 5.2	Bibliography	98 102 103 106
5	 4.6 Rev 5.1 5.2 5.3 	Bibliography	98 102 103 106 109
5	 4.6 Rev 5.1 5.2 5.3 	Bibliography Image: Constraint of the stability of pulsatile pipe flows isiting the stability of pulsatile pipe flows Introduction Image: Constraint of the pipe flows The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Image: Constraint of the pipe flows Salerkin Method Image: Constraint of the pipe flows 5.3.1 The Long-Wave Orr-Sommerfeld Basis The Design of the pipe flows	98 102 103 106 109 110
5	4.6 Rev 5.1 5.2 5.3	Bibliography Introduction The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Galerkin Method 5.3.1 The Long-Wave Orr-Sommerfeld Basis Sommerfeld Equation	98 102 103 106 109 110 111
5	 4.6 Rev 5.1 5.2 5.3 5.4 	Bibliography Introduction isiting the stability of pulsatile pipe flows Introduction Introduction The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Galerkin Method Introduction 5.3.1 The Long-Wave Orr-Sommerfeld Basis 5.3.2 Galerkin Projection The Energy Growth Introduction	98 102 103 106 109 110 111 112
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 	Bibliography	98 102 103 106 109 110 111 112 114
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 	Bibliography Introduction isiting the stability of pulsatile pipe flows Introduction Introduction The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Galerkin Method Introduction 5.3.1 The Long-Wave Orr-Sommerfeld Basis 5.3.2 Galerkin Projection The Energy Growth Introduction Asymptotic Solutions Introduction	98 102 103 106 109 110 111 112 114 117
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 	Bibliography Introduction isiting the stability of pulsatile pipe flows Introduction The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Galerkin Method 5.3.1 The Long-Wave Orr-Sommerfeld Basis 5.3.2 Galerkin Projection The Energy Growth Asymptotic Solutions 5.6.1 The Case of Long-Wave Perturbations	98 102 103 106 109 110 111 112 114 117
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122 122
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122 122 126
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122 122 122 126 128
5	4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 El-	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122 122 126 128 147
5	4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Flue 6.1	Bibliography Introduction isiting the stability of pulsatile pipe flows Introduction The Orr-Sommerfeld Equation for Perturbed, Oscillatory Pipe Flow Galerkin Method 53.1 5.3.1 The Long-Wave Orr-Sommerfeld Basis 5.3.2 Galerkin Projection The Energy Growth The Energy Growth Results Asymptotic Solutions 5.6.1 The Case of Long-Wave Perturbations 5.6.2 The Case of Womersley Number Wo $\rightarrow \infty$ Conclusions APPENDIX A APPENDIX B APPENDIX B APPENDIX D Bibliography Bibliography Bibliography	98 102 103 106 109 110 111 112 114 117 118 120 121 122 122 126 128 147 148
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Fluce 6.1 6.2 	Bibliography	98 102 103 106 109 110 111 112 114 117 117 118 120 121 122 122 126 128 147 148 155
5	 4.6 Rev 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Flue 6.1 6.2 	Bibliography	98 102 103 106 109 110 111 112 114 117 118 120 121 122 122 126 128 147 148 155 157

		6.2.2 Inhomogeno	us domains	162
	6.3	Experiments		166
		6.3.1 Comparison	to FEM and Analytical Solution on a Homoge-	
		neous Spher	e	166
		6.3.2 Comparison	to FEM and Experimental Data from a Non-homoger	ieous
		Breast Phan	ntom	168
	6.4	Results		170
		6.4.1 Comparison	to Analytical Sphere Solutions	170
		6.4.2 Comparison	to Experimental Data from Breast Phantom	170
	6.5	Summary and Cond	clusions	171
	6.6	Appendix A: Analy	tical derivation of the Green matrix $\underline{\Psi}$	173
	6.7	Appendix B: Comp	$\underline{\mathbf{H}}$ and $\underline{\mathbf{G}}$	175
	6.8	Appendix C: Analy	tic Solution to Homogeneous Domain	177
	6.9	Acknowledgments .		178
	6.10	Bibliography		179
7	Con	prehensive Biblic	ography	193

List of Figures

2.1	Template for the collocation scheme.	59
2.2	Convergence obtained for the case of advective-diffusive transport of a	
	Gauss cone using $\mathcal{D} = 1.0 \times 10^{-5} m^2/s$ and $\mathcal{D} = 1.0 \times 10^{-2} m^2/s$, $c =$	
	0.25 m/s, $\Delta t = 1/400$ s, $\Delta x = 2^{n}$ m, $n = 4, 5, 6, 7, 8, \sigma^{2} =$	
	$0.002 m^2$, and $x_0 = 0.5 m$. First-order collocation points have been used.	59
2.3	Convergence obtained for the case of advection of a Gauss cone us-	
	ing $\mathcal{D} = 0 \ m^2/s, \ c = 0.25 \ m/s, \ \Delta t = 2^{-n}m, \ n = 3, 4, 5, 6, \ \sigma^2 =$	
	$0.02 \ m^2, L = 5 \ m, \text{ and } x_0 = 2 \ m.$	59
2.4	Three dimensional dissolution problem setup.	60
2.5	Representative slice taken of the domain to show the results from the	
	sample problem	60
2.6	The results of the concentration of NAPL contaminant species in the	
	water phase for (a) the classical collocation method and (b) LOCOM,	
	at time = $256,000$ s	61
2.7	The results of the concentration of NAPL contaminant species in the	
	water phase for (a) the classical collocation method and (b) LOCOM,	
	at time = $256,000$ s	61
2.8	Rates of convergence of LOCOM and Classical Collocation	62
5.1	The first 6 long-wave Orr-Sommerfeld eigenfunctions	135
5.2	Plots of the characteristic exponents $\{\gamma_k\}_{k=1}^N$ for $\text{Re} = 1500$. St = 1.	200
0.2	Wo = $\sqrt{\text{Re}} - \frac{K_{\mu}}{K_{\mu}} = 2$ and wavenumber $\alpha = 1$. For comparison	
	purposes the plot of the eigenvalues of the steady Poiseuille flow is	
	also shown (Galerkin expansion consisting of $N = 30$ terms)	136
5.3	The optimal energy growth $\mathcal{G}_{ent}(t)$ as function of the time at which	100
	it occurs t (Re = 3500 and Wo = 10, 30). See Figs. 5.4.5.5 for the	
	corresponding stream function $\hat{\psi}(r,t)$ at time $t = t_{\text{max}}$ when the max	
	energy growth \mathcal{G}_{max} occurs	137
5.4	Stream function of the optimal disturbance at time $t = t_{max}$ when the	
	max energy growth $\mathcal{G}_{\text{max}} = 1.2$ occurs for $Wo = 10$, Re = 3500	138
5.5	Stream function of the optimal disturbance at time $t = t_{\text{max}}$ when the	
	max energy growth $\mathcal{G}_{max} = 2.6$ occurs for $Wo = 30$ and $\mathrm{Re} = 3500$.	139
5.6	Stream function of the optimal disturbance at time $t = 0$ for $Wo = 20$	
	and $\text{Re} = 1000$.	140

5.7	Stream function of the optimal disturbance at time $t = t_{\text{max}}$ for Wo = 20 and Re = 1000.	141
5.8	Stream function of the optimal disturbance at time $t = 2T$ for Wo = 20 and Re = 1000.	142
5.9	Stream function of the optimal disturbance at time $t = 3T$ for Wo = 20 and Re = 1000.	143
5.10	Max energy growth \mathcal{G}_{max} as function of the Reynold number Re for different values of the Womersley number Wo. The plot of $\mathcal{G}_{max,st}$ for	
5.11	the case of steady Poiseille flow is also reported for comparison Plots of the ratio η as a function of the Reynold number Re for Wo = 30	144
5.12	and the upper bound defined in Eq. (5.35)	$\begin{array}{c} 145\\ 145 \end{array}$
5.13	Relative errors curves for the least stable eigenvalue of steady Poiseuille pipe flow for $\alpha = 1$ and $\text{Re} = 2000$	146
6.1	Geometry and notation of inhomogeneous domain showing a) the outer subdomain Ω_o and b) one inner subdomain Ω_i (illustrated in 2D, for	
6.2	clarity)	186
6.3	cretizations of the nine sphere meshes used (see Table 1) Cut-away views of the discretizations used for the breast phantom sim- ulations. a) Finite element mesh, and b) boundary element mesh show	186
6.4	ing internal target. See Table 4 for additional specifications FEM and BEM referenced predictions for excitation (a,c) and emis- sion (b,c) fluonce, at all surface nodes on the finest sphere (Figure 2c	187
	Table 1). Perfect predictions would be a horizontal line at 1.0 for the real components (a,b) and a horizontal line at 0.0 for the imagingary	
6.5	components (c,d)	188
6.6	erenced predicted)	189
6.7	sources	190
0.0	the meshes shown in Figure 3. If there were no measurement or model error the distributions would be a vertical spike at 0 of height 1.0.	191
6.8	Local geometry of a node, showing the spherical surface $\partial \Omega_{\epsilon}$ centered at node $\underline{\mathbf{x}}_{j}$, and the internal solid angle ϑ_{j} , described in Appendix B.	192

List of Tables

5.1	Comparison of asymptotic and numerical eigenvalues	134
6.1	Three of the nine mesh discretizations of the 5 cm diameter sphere.	185
6.2	Optical parameter values used in all simulations at the excitation wave-	
	length and the emission wavelength	185
6.3	Error metrics for FEM and BEM predictions of real and imaginary	
	components emission fluence, as compared to measured data on the	
	breast phantom. Here, mean (a.k.a., bias) and variance are reported	
	for referenced (measured - predicted) m from 401 source-detector pairs	
	(all 11 sources) (see Figure 7). \ldots	185
6.4	Computational requirements of two breast meshes used (Figure 3)	186