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Abstract

We revisit the problem of the stability of pulsatile pipe flow for axisymmetric perturbations. In contrast to the earlier ap
based on the Chebyshev expansion for the spatial discretization [J. Appl. Mech. ASME 53 (1986) 187], we use the s
eigenfunctions derived from the longwave limit of the Orr–Sommerfeld equation. We show that the Orr–Sommerfe
gives greater accuracy than the Chebyshev basis if fewer terms are used in the Galerkin expansion. For the time ev
the flow perturbation, instead of the usual Floquet analysis, a different representation for the solution of the periodi
of linear differential equations is employed. We found that the flow structures corresponding to the largest energy gr
toroidal vortex tubes. They are stretched by the shear stress of the mean flow so that a maximum energy growth oc
flow perturbation subsequently decays due to viscous effects.The maximum energy growth is then evaluated over a rang
Reynolds and Womersley numbers. Asymptotic solutions provided for the longwave limit as well as the limit of large Wom
numbers agree well with the numerical results, confirming the known linear stability of the flow.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The study of pulsatile tube flow appears to have been first considered in the context of arterial hemodynamics in the
1950s. Womersley and co-workers obtained an exact solution of the Navier–Stokes equations for the fully-developed
profile of a oscillatory, incompressible flow in a circular tube [1,2]. The stability and behavior of arterial blood flow in respon
to perturbations (receptivity) – whether arising from a cardiac fluctuation or a vessel wall non-uniformity or constrictio
have significant implications for altered vascular wall shear stresses and overall vascular impedance. For example, c
normal wall shear stress distributions are believed to play a role in atherogenesis whereas a transition to turbulent flow
large vessel can lead to substantial increases in flow resistance and increased cardiac load [3].

Pulsatile flow has also recently found renewed significance in its application to MEMS microfluidic engineering applications.
A common feature of many of the microfluidic devices described in the literature that incorporate micro-scale pumpin
the flow is a pulsatile one [4,5]. The case of flow pulsations as a potential laminar mixing strategy for MEMS devices h
been examined in [6,7]. The relevance of pulsatile flow for arterial flows and certain microfluidic applications has thus p
the motivation of the present study in which we re-examine its stability characteristics.
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The linear stability of the limiting case of steady Poiseuille flow in a pipe has been investigated extensively by a number
flow
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of authors [8–15]. Such an analysis showsthat all the eigenmodes are damped, although an initial energy growth of the
perturbation can occur due to the non-normality of the Orr–Sommerfeld operator (i.e. the operator does not commute wit
its adjoint). For a non-normal operator [16,17] the associated eigenmodes do not exhibit orthogonality and consequently the
superposition can result in an energy growth.

In this paper we revisit the problem of the linear stability of pulsatile pipe flow. We shall consider only axisym
perturbations and study their transient energy growth, although we point out that non-axisymmetric disturbances m
exist having higher energy growth as for the case of steady pipe flow [10,17]. The starting point is the fourth-ord
Sommerfeld equation which is satisfied by the Stokes stream function for axisymmetric flow perturbations [18]. W
consider the approach proposed in [14,15] where the set of eigenfunctions of a simplified Orr–Sommerfeld operato
for the solution of the Orr–Sommerfeld equation by the Galerkin method. In contrast to the earlier approach [19] in
a Chebyshev expansion was used, our spatial discretization is based on the eigenfunctions derived from the long-w
of the Orr–Sommerfeld equation. We note that these eigenfunctions are essentially the eigenmodes of the Stokes
pipe. The comparison of the two eigenbasis shows that for smaller number of termsN ∼ 15–20 in the Galerkin expansion, th
Orr–Sommerfeld eigenbasis gives smaller relative error then the Chebyshev basis, although it is well known that the C
basis gives smaller error than any power ofN−1 asymptotically forN → ∞. Nevertheless, the use of the Orr–Sommerf
basis seems to be a very good candidate for the construction of lower order models by the Galerkin method: fewer eig
would be sufficient to retain relatively greater accuracy than the Chebyshev basis.

For the time evolution of the flow perturbation, instead of the usual Floquet analysis, a different representation
solution of the periodic system of linear differential equations is employed. The interested reader may refer to Refs. [20
other time-dependent flow stability analyses. An excellentsummary on the stability of time-periodic flows is found in [26].

For the case of axisymmetric perturbations, it has been found in this work that the flow structures giving the larges
growth are toroidal vortex tubes. These axisymmetric flow structures are stretched by the shear stress of the mean
the streamwise direction and reach a point of maximum energy growth. Beyond this point a decay occurs due to viscou
Maximum energy growth of the flow perturbation has been evaluated over a range of Reynolds and Womersley num
parametric regime considered has been chosen in part due to their relevance to arterial blood flow and also to mi
applications. Our numerical results are found to be in good agreement with asymptotic solutions obtained for the lo
limit as well as the limit of large Womersley numbers.

The determination of the initial conditions which give rise to themaximum energy growth appears to be relevant, if transition
to turbulence is thought as emanating from nonmodal energy growth mechanisms, i.e. ‘bypasstransition’ (see [27, p. 402
and [28]). Another viewpoint on the transition to turbulence has been proposed in [29–31]; here, a specific feedback mechanism
to transition in channel flows has been identified based on a self-sustaining process. This approach has led to the di
exact travelling wave solutions for pipe flows [32,33].

Recent experimental results of Hof et al. [34] suggest that both nonmodal energy growth and self-sustaining me
could be important to understand pipe flow transition. In their experimental work ithas been found that the finite amplitude
the perturbation necessary to trigger transition in a pipe flow scales as O(Re−1) with Re the Reynolds number. As reporte
by Hof et al. [34] regarding the exponent of this scaling, “the exponent. . . is in agreement with recent estimates for pipe flow
where transient growth plays a role. Theexponent also indicates a generic transition so that a challenge to theory is to provid
a more definitive indicator which will permit a distinction between competing ideas to be made”.

Along these lines, we believe that the semi-analytical approach presented in this paper provides a framework for e
non-axisymmetric perturbations and their linear or nonlinear space-time dynamics. The highlight of the present wo
possibility of constructing Galerkin lower order models for pipe flows using fewer eigenmodes yet retaining greater ac

2. The Orr–Sommerfeld equation for perturbed, oscillatory pipe flow

Consider the pulsatile flow dynamics in a pipe of circular crosssection of radiusR driven by an imposed periodic pressu
gradient∂P/∂z. The fully-developed streamwise velocityW(r, t) satisfies the following initial boundary value problem

∂W

∂t
− ν

1

r

∂

∂r

(
r
∂W

∂r

)
= − 1

ρ

∂P

∂z
,

∂P

∂z
= −[

K0 + Kω exp(iωt)
]

(1)

with the no-slip condition at the boundary of the pipe, and the boundedness of the velocity field at the centerline of the tub
The solution for the radial velocity profileW(r, t) is given by [1,2]

W(r, t) = K0

4µ
(R2 − r2) + R2

µWo2i

[
1− J0( r

R
i3/2Wo)

J0(i3/2Wo)

]
Kω exp(iωt), (2)
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whereR is the tube radius,J0 is the Bessel function of the first kind of order zero [35],µ is the viscosity, and the parameter√
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Wo, known as the Womersley number, is defined byWo = ρωR /µ. It may be interpreted as either the ratio of oscillato
inertia to viscous forces or as a Reynolds number for the flow usingωR as the velocity scale. Still a third interpretation is a
measure of the ratio of the tube radius to the Stokes layer thicknessδs = (ν/ω)1/2.

In order to study the stability of the basic flow field (2), the axisymmetric velocity perturbation (ur = u,uθ = 0, uz = w) is
superimposed onto the basic flow,

ur = u(z, r, t), uθ = 0, uz = W(r, t) + w(z, r, t), p̃ = p(z, r, t) + P(z, t). (3)

Here, (z, r, θ) define a cylindrical coordinate system withz-axis along the streamwise direction, (ur ,uθ ,uz) are the radial,
azimuthal and streamwise velocity components andp̃ is the pressure. The velocity field (3) has to satisfy the incompres
Navier–Stokes equations

Dur

Dt
= u2

θ

r
− 1

ρ

∂p̃

∂r
+ ν

(
∇2ur − ur

r2
− 2

r2
∂uθ

∂θ

)
,

Duθ

Dt
= − 1

ρr

∂p̃

∂θ
+ ν

(
∇2uθ + 2

r2

∂ur

∂θ
− uθ

r2

)
,

Duz

Dt
= − 1

ρ

∂p̃

∂z
+ ν∇2uz,

∂ur

∂r
+ ur

r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0,

(4)

whereD(·)/Dt , ∇2(·) are the material derivative and the Laplacian operator in cylindrical coordinates respectively. Subs
the velocities (3) into Eq. (4) and neglectingnonlinear terms, yield the following equations

∂u

∂t
+ W

∂u

∂z
= − 1

ρ

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2
− u

r2

)
,

∂w

∂t
+ u

∂W

∂r
+ W

∂w

∂z
= − 1

ρ

∂p

∂z
+ ν

(
1

r

∂

∂r

(
r
∂w

∂r

)
+ ∂2w

∂z2

)
,

1

r

∂

∂r
(ru) + ∂w

∂z
= 0

(5)

governing the linear dynamics of the axisymmetric flow perturbation(u,w,p). We assume periodicity along the streamw
direction and letα denote the streamwise wave number. The Stokes stream functionΨ (r, z, t) = ψ(r, t)eiαz allows the following
representation of the radial and streamwise velocity components of the perturbation

u = −1

r

∂Ψ

∂z
= −ψ(r, t)

r
iαeiαz, w = 1

r

∂Ψ

∂r
= 1

r

∂ψ

∂r
eiαz (6)

and the condition of incompressibility is automatically satisfied in Eq. (5). Eliminating the perturbation pressurep from the two
first equations of (5) and using Eq. (6), the following Orr–Sommerfeld equation forψ can be obtained (see also [8–18])

Lψt − W iα3ψ + iα(−ψLW + WLψ) = Re−1L2ψ,

ψ(r, t)

r
< ∞,

1

r

∂ψ

∂r
< ∞ asr → 0+,

ψ(1, t) = ∂ψ

∂r
(1, t) = 0.

(7)

Here, the differential operator is defined by

L= ∂2

∂r2
− 1

r

∂

∂r
− α2

and the boundary conditions reflect the boundedness of the flow at the centerline of the pipe and the no-slip condition at
wall. In order to derive Eq. (7) the time, radial lengths, streamwise lengths and velocities have been scaled withT,R,L,U0
respectively. Here,T = R/U0 is a convective time scale,R is the tube radius,L = 2π/α is the wavelength of the perturbatio
andU0 a characteristic velocity. The Reynolds and Strouhal numbers are defined as

Re = U0R

ν
, St = ωT. (8)
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The basic velocity fieldW (see Eq. (2)) is in the dimensionless form
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W(r, t) = W0 + W1 exp(it St) (9)

and the functionsW0 andW1 are given by

W0 = Λ0(1− r2), W1 = Λ1
1

i

[
1− J0(i3/2 Wo r)

J0(i3/2 Wo )

]
, (10)

where the non-dimensional amplitudesΛ0 andΛ1 have expression as

Λ0 = K0R2

4µU0
, Λ1 = KωR2

µSt ReU0
.

In the following it is chosenU0 = K0R
2/4µ (characteristic velocity of steady Poiseuille flow) which yieldsΛ0 = 1 and

Λ1 = 4Kω/(K0 St Re).
The flows considered in this paper are characterized by the numbersRe = 50–5000 andWo = 10–30; the correspondin

frequency regime is given by Strouhal numbersSt � 0.1–20. This parametric regime was chosen so as to include cas
arterial blood flows as well as MEMS-based pumping.

3. Galerkin method

We now derive the time-periodic system of first order linear differential equations which governs the dynamics
flow perturbation. Following the approach used in [14,15] where the eigenmodes of a simplified Orr–Sommerfeld
are considered, for the spatial discretization of the Orr–Sommerfeld equation (7) we use a finite set of the eigenfun
the long-wave limit Orr–Sommerfeld operator (i.e. Orr–Sommerfeld basis). Other eigenbasis can be chosen for th
Galerkin projection, as for the example Chebyshev polynomials. In Appendix D we report numerical results showing
Orr–Sommerfeld basis gives better accuracy than the Chebyshev basis if few termsN ∼ 15–20 in the Galerkin expansion a
used.

3.1. The long-wave Orr–Sommerfeld basis

Exact solutions of the Orr–Sommerfeld equation are difficult to obtain for an arbitrary wave numberα. In the limit ofα → 0,
which represents the case of a long-wave perturbation, Eq. (7) admits the simple expansion

ψ̃(r, t) =
∞∑

n=1

anφn(r)exp(−λnt).

The set of coefficients{an}∞
n=1 is defined by the initial conditions and the set of eigenfunctions{φn(r)}∞

n=1
1 and eigenvalues

{λn}∞
n=1 satisfy the eigenvalue problem

L̃2φn = −ReλnL̃φn,

1

r
φn < ∞,

1

r

∂φn

∂r
< ∞, r → 0+,

φn = ∂φn

∂r
= 0 atr = 1.

(11)

Here, L̃ = r∂/∂r(r−1∂/∂r) is a reduced operator and the eigenvalues are given byλn = χ2
n/Re whereχn are the roots of

J2(χ) = 0. One readily finds (see Appendix A for details)

φn(r) =
√

2

χn
r

(
r − J1(χnr)

J1(χn)

)
, (12)

whereJ1(r)andJ2(r)are the Bessel functions of first kind of order 1 and 2, respectively [35]. The first six eigenfunc
shown in Fig. 1, exhibit the characteristic behavior of Bessel’s functions: increasing number of extrema and mono
decreasing maxima. Since the perturbation is bounded forr → 0+, this impliesφn = ∂φn/∂r = 0 at r = 0, and this may be
verified directly from Eq. (12).

1 Note that this set represents the eigenmodes of the Stokes flow for a pipe.
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Fig. 1. The first 6 long-wave Orr–Sommerfeld eigenfunctions.

The function spaceF = span(φ1, . . . , φn, . . .) with the following inner product

〈f,g〉 = −
1∫

0

f L̃g
dr

r
=

1∫
0

∂f

∂r

∂g

∂r

dr

r
, (13)

is a Hilbert space and the set of eigenfunctions{φn}∞
n=1is a complete orthonormal set. We shall refer to the set{φn}∞

n=1 as the
Orr–Sommerfeld basis. The inner product (13) induces the following norm

‖f ‖2 = 〈f,f ∗〉 =
1∫

0

∂f

∂r

∂f ∗
∂r

dr

r
= 2E(f, t)|α=0.

This norm is twice the long-wave limit of the energyE(f, t) of the axisymmetric velocity fielduf = −f
r iαeiαz andwf =

1
r

∂f
∂r

eiαz (see Eq. (6)), defined as

E(f, t) = 1

2

1∫
0

(uf u∗
f + wf w∗

f )dr = 1

2

1∫
0

(
∂f

∂r

∂f ∗
∂r

+ α2f f ∗
)

dr

r
. (14)

3.2. Galerkin projection

Consider now a complete basis{hk(r)}∞k=1 for the function spaceF where{hk(r)}∞k=1 can be the Orr–Sommerfeld bas
{φn}∞

n=1 or any other basis. Let us define its finite dimensional subspaceF̂ = span[h1(r), h2(r), . . . , hN (r)], whereN is
the number of function basis. In order to solve the Orr–Sommerfeld equation (7) we seek an approximation stream
ψ̂(r, t) ∈ F̂ as

ψ̂(r, t) =
N∑

k=1

ak(t)hk(r), (15)

where{ak(t)}Nn=1are time-dependent coefficients to be determined. Under this expansion the boundary conditions in Eq.

are automatically satisfied. To derive the equations for{ak(t)}Nn=1 we shall project the Orr–Sommerfeld equation (7) onto
approximation function spacêF . Using the inner product in Eq. (13), then-th projection of the Orr–Sommerfeld equation
Eq. (7) appears as

−
1∫

0

[
Lψ̂t − W iα3ψ̂ + iα(−ψ̂LW + WLψ̂) − 1

Re
L2ψ̂

]
hn

dr

r
= 0. (16)
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By substituting the expansion (15) into Eq. (16), it is possible to show that the set of time-varying functions{an(t)}N
n=1 satisfies

stream

atrix

n

trix

e non-

.e.

e

a finite system of periodic, first-order linear ordinary differential equations. In matrix notation, the system is given by

M
da
dt

= [
K + H exp(itSt)

]
a. (17)

Here,a(t) is a column vector of dimensionN whosen-th component isan(t) and the constant matricesM , K , H of dimension
(N × N) are defined in Appendix B. From Eq. (14) the energy of the velocity field associated to the approximation
function ψ̂ is expressed as

E(ψ, t) = 1

2
a∗(t)Ma(t), (18)

wherea∗ denotes the Hermitian conjugate. Since the energy is a positive definite scalar quantity, this implies that the mM
has to be positive definite and therefore its inverse exists. Thus Eq. (17) can be rewritten as

da
dt

= [
M−1K + M−1H exp(it St)

]
a. (19)

The fundamental matrixG(t) satisfies the system (19) with initial conditionsG(0) = I , whereI is theN × N identity matrix.

4. The energy growth

The time evolution ofa(t), for anyt , depends entirely on the fundamental matrixG(τ) for the system (19), evaluated only o
the intervalτ ∈ [0,T] whereT = 2π/St is the dimensionless period of oscillations. By decomposing the time ast = τ +mT with
m an integer, the solution can be written as

a(t) = G(τ)Gm(T)a(0), τ ∈ [0,T], (20)

where the vectora(0) defines the initial conditions. Extensive computations (e.g. Runge–Kutta method) show that the ma
G(T) has distinct eigenvalues{µk}Nk=1 (a.k.a. the characteristic multipliers) which allows the diagonalization

G(T) = Qexp(Γ T)Q−1. (21)

Although the columns ofQ are linearly independent, they are in general not orthogonal; this is a consequence of th
normality of the Orr–Sommerfeld operator. The diagonal entries of the matrixΓ are the characteristic exponents{γk}Nk=1
which are related to the characteristic multipliers by

γk = lnµk

T
. (22)

The solution is strictly stable if all the characteristic exponentsγk lie strictly in the left hand part of the complex plane, i
Re(γk) < 0.

The initial perturbation, defined by the vectora(0), is characterized by the stream functionψ̂(r,0) = ∑N
k=1 ak(0)hk(r) (see

Eq. (15)). Its energy growthG(t), at timet , can be evaluated by means of Eq. (18) as follows

G(c, t) = E(ψ̂, t)

E(ψ̂,0)
= a(0)∗E(t)a(0)

a(0)∗E(0)a(0)
.

Here, the matrixE(t) is given by

E(t) = [
Gm(T)

]∗G(τ)∗M G(τ)Gm(T). (23)

The optimal initial conditionaopt which gives the maximum growthGopt(t) attained at timet satisfies the following eigenvalu
problem

E(t)aopt= Gopt(t)E(0)aopt. (24)

Note thatGopt(t) as function oft , should be thought as the envelope of the energy evolution of individual optimal initial
conditionsaopt giving the maximum growthGopt(t) at timet (see also [36]). The largest energy growthGmax for the pulsatile
flow, attained at timet = tmax, is then given by

Gmax= sup
t∈[0,∞)

Gopt(t). (25)

Note thatGmax can be alternatively evaluated via an adjoint method as in [27,37,38].
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For the case of steady Poiseuille flow the fundamental matrix is readily derived from Eq. (19) as
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Gst(t) = exp(tM−1K). (26)

The optimal energy growthGopt,st(t) at timet is then given by the following expression

Gopt,st(t) = ∥∥G∗
st(t)MGst(t)

∥∥, (27)

where the matrix norm‖ · ‖ can be evaluated by means of the singular value decomposition [27,36].

5. Results

As an example, consider an axial perturbation with wavenumberα = 1 and a strongly pulsatile forcing of the basic flo
characterized by the ratioKω/K0 = 2. We shall use the long-wave Orr–Sommerfeld basis with a Galerkin expansion con
of N = 30 terms. We examine the stability of a basic pulsatile flow state characterized bySt = 1, andWo = √

Re. The charac-
teristic exponents{γk}Nk=1 (see Eq. (22)) are plotted in Fig. 2 in the complex plane forRe = 1500. For comparison purpose
the plot of the eigenvalues of the steady Poiseuille flow is also shown in the figure. The real part of the characteristic expon
are slightly more negative than their steady counterparts, indicating that the pulsatile flow is slightly more stablethan the steady
Poiseuille flow [19]. The characteristic exponents having the highest damping in Fig. 2are spurious due to the numerical err
in evaluating the fundamental matrixG(T) by the Runge–Kutta method. These spurious modes are ignored in the evalua
the energy growth.

A plot of Gopt(t) vs. t is shown in Fig. 3 forRe = 3500 and two different values of the Womersley numberWo = 10 and 30.
Due to the non-normality of the Orr–Sommerfeld operator,Gopt(t) is not a monotonic decreasing function of the timet . It first
increases towards a maximumGmax and then decays. The details of the flow structures at the point of maximum energy g
Gmax attained at timet = tmax are shown in Figs. 4 and 5 for the corresponding Womersley number of 10 and 30 respe
These structures are toroidal vortex tubes. They are relatively more stretched along the streamwise direction by the m
as the Womersley numberWo increases. The increased stretching of the flow structure implies an increased velocity field a
a corresponding increased flow energy. This confirms the higher value of the maximum energy growthGmax for the case of
Womersley numberWo = 30 as one can see from Fig. 3.

As an example of the time evolution of the flow perturbation, consider the initial condition giving the largest energy growt
Gmax for the case ofWo = 20 andRe = 1000 (dimensionless period oscillationT = 18.2). At time t = 0 the stream function
of the initial flow perturbation is given in Fig. 6. As time evolves, the mean shear stress tends to stretch the vortex t
that at timet = tmax= 11.8 (see Fig. 7) the flow configuration is such that its energy growth attains a maximum (Gmax� 1.5).
Beyond this time the vortex tubes tend to migrate closer to the centerline (r = 0) where the effectiveness of the shear stres
diminished. The flow structure then decays in time due to viscous effects as shown in Figs. 8 and 9.

Fig. 2. Plots of the characteristic exponents{γk}Nk=1 for Re = 1500,St = 1, Wo = √
Re, Kω/K0 = 2 and wavenumberα = 1. For comparison

purposes, the plot of the eigenvalues of the steady Poiseuille flow is also shown. (Galerkin expansion consisting ofN = 30 terms.)
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Fig. 3. The optimal energy growthGopt(t) as function of the time at which it occurst (Re = 3500 andWo = 10,30). See Figs. 4, 5 for th

corresponding stream function̂ψ(r, t) at timet = tmax when the max energy growthGmax occurs.

Fig. 4. Stream function of the optimal disturbance at timet = tmax when the max energy growthGmax= 1.2 occurs forWo = 10,Re = 3500.

Finally the flow response to axisymmetric perturbations with wavenumberα = 1 is summarized in Fig. 10. The maximu
energy growthGmax is plotted as a function of the Reynolds numberRe in the range 50–5000, for values of the Womers
numberWo ranging between 10 to 30. The corresponding frequency regime is characterized by Strouhal numbersSt � 0.1–20.
For comparison, the plot of the maximum energy growthGmax,st for the case of steady Poiseuille flow is also displayed.
largerWo, the stability characteristics of the steady Poiseuille flow are recovered. This is to be expected, since the a
of the pulsations scales as O(Wo−2). For α = 1 we find an upper bound ofWo � 30 beyond which the pulsatile forcin
has negligible influence on the stability of the pulsatile flow. As the Womersley number is reduced, the flow perturb
characterized by successively smaller maximum energy growth than its steady counterpart (see Fig. 10). This may
possible explanation for the observed suppression of the turbulence spots in pulsatile pipe flow transition for low frequen
regimes (see [19] and references therein). The numerical results also provide a minimum Reynold number ofRemin � 370 that
has to be surpassed in order to yield an energy growth. This result is found to be independent of the Womersley n
has been reported for steady Poiseuille flow that an energy growth occurs at the threshold Reynolds numberαRemin = 369.7
(see [27], p. 117, Fig. 4.5). Thus, forα = 1, we find that the minimum Reynolds number for steady and pulsatile cases a
almost indistinguishable. This has immediate implications for pulsation-induced mixing on the micro-scale: for the ty
low Reynolds numbers found in microchannel flows, it appears that linear perturbations to multi-fluid configurations will be
ineffectual.
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Fig. 5. Stream function of the optimal disturbance at timet = tmax when the max energy growthGmax= 2.6 occurs forWo = 30 andRe = 3500.

Fig. 6. Stream function of the optimal disturbance at timet = 0 for Wo = 20 andRe = 1000.

Fig. 7. Stream function of the optimal disturbance at timet = tmax for Wo = 20 andRe = 1000.
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Fig. 8. Stream function of the optimal disturbance at timet = 2T for Wo = 20 andRe = 1000.

Fig. 9. Stream function of the optimal disturbance at timet = 3T for Wo = 20 andRe = 1000.

Fig. 10. Max energy growthGmax as function of the Reynold numberRe for different values of the Womersley numberWo. The plot ofGmax,st
for the case of steady Poiseille flow is also reported for comparison.
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Table 1

s for a

g a mul-
sion.
dix C for

se
e

and the

ary
γ̃k (asymptotic) γk (numeric) |1− γ̃k/γk |
−0.0176− 0.0818i −0.0198− 0.0814i 0.0266
−0.0473− 0.0723i −0.0499− 0.0738i 0.0341
−0.0900− 0.0696i −0.0907− 0.0690i 0.0074
−0.1460− 0.0685i −0.1455− 0.0682i 0.0031
−0.2151− 0.0679i −0.2145− 0.0678i 0.0024
−0.2973− 0.0676i −0.2968− 0.0675i 0.0016
−0.3927− 0.0673i −0.3923− 0.0673i 0.0011
−0.5013− 0.0672i −0.5009− 0.0672i 0.0007
−0.6230− 0.0671i −0.6227− 0.0671i 0.0005
−0.7579− 0.0670i −0.7576− 0.0670i 0.0004
−0.9059− 0.0670i −0.9057− 0.0670i 0.0003
−1.0671− 0.0669i −1.0669− 0.0669i 0.0002
−1.2415− 0.0669i −1.2413− 0.0669i 0.0001
−1.4290− 0.0669i −1.4289− 0.0669i 0.0001
−1.6297− 0.0668i −1.6296− 0.0668i 0.0001

6. Asymptotic solutions

Analytical solutions of the system (19) can also be derived in two distinct and important limits. The first case i
long-wave perturbation whenα � 1. The second solution is valid for high Womersley numbers (Wo → ∞).

6.1. The case of long-wave perturbations

In the long-wave limit there is a separation of the inertial, advection and viscous time scales, which suggests usin
tiscale perturbation approach. Here, the streamwise wave numberα serves as the small parameter in the multiscale expan
Assume that Eq. (17) has been derived using the Orr–Sommerfeld basis. The long-wave limit solution (see Appen
details) for the fundamental matrixG(t) is given by

G(t) = exp
[(

K0 + α diag(K1) + α2 diag(K2 − M2K0)
)
t
]

asα/Wo2 → 0. (28)

We can conclude that in the limit ofα/Wo2 → 0, the characteristic exponents{γk}Nk=1 are equal to

γk = −χ2
k

Re

(
1+ α2

1∫
0

φ2
k

dr

r

)
− 2

Re
α2 + iα

(
−1+

1∫
0

r φkL̃φk dr

)
. (29)

Note that Eq. (29) shows no dependenceupon the oscillatory part of the flow (i.e.Wo) and gives the eigenvalues for the ca
of the steady Poiseuille flow. Thus in the long-wave limit, the perturbation is not affected by the pulsatile part of the flow if th
wavelength of the disturbanceL is much greater than the thicknessδω of the Stokes layer, i.e.α/Wo2 → 0.

Consider the pulsatile basic flow characterized by the numbersRe = 1500, St = 1, Wo = 38.7 andKω/K0 = 2 and assume
an axial perturbation with wavenumberα = 0.1. We shall use the Galerkin expansion (15) consisting ofN = 30 terms. In
Table 1 it is shown a comparison between the eigenvalues obtained by numerically solving the fundamental matrix
analytical eigenvalues (29). As one can see the agreement between numerical and analytical results is quite good.

6.2. The case of Womersley numberWo → ∞

The exact analytical solution of the system (19) can be obtained provided the two matricesM−1K andM−1H commute.
In general, these two matrices do not commute, except for case of large Womersley numbers (Wo → ∞). In this limit, the
amplitudeW1 of the oscillatory part of the basic flow (9) tends to be nearly uniform, since the thickness of the Stokes bound
layer tends to zero. The following asymptotic expression2 for W1 then holds

W1 � W̃1 = 1

Wo2

4Kω

iK0
asWo → ∞. (30)

2 In Eq. (10), for fixed radiusr , if Wo → ∞ the second term in the square brackets, involving Bessel’s functions, goes to zero.
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This implies that the matrixH (see Eq. (19) and Appendix D) simplifies as follows

rix. The

l

ility
,

iables
H � −iαW̃1M asWo → ∞,

and the system (19) reduces to the form

da
dt

= [
M−1K−iαW̃1I exp(itSt)

]
a. (31)

This system can be solved analytically since the scalar multiple of the identity matrix commutes with any other mat
solution is given by3

a(t,T ) = exp

[
4αKωt

K0Wo2

(
sinT
T + i

cosT − 1

T

)]
Gst(t)a(0) asWo → ∞, (32)

whereGst(t) is the fundamental matrix for the case of thesteady Poiseuille flow (see Eq. (26)) anda(0) are appropriate initia
conditions. Here the solution depends upon the time scalet and the long time scaleT = t St. In Eq. (32), if alsoα/Wo2 → 0,
then the exponential factor is almost equal to 1 andGst(t) tends to the long-wave limit solution (28).

The energy of the flow perturbation can be evaluated by means of Eq. (18) with the result

E(t,T ) = Est(t)Eosc(T ) asWo → ∞. (33)

Here,

Est(t) = 1

2
a∗(0)G∗

st(t)MGst(t)a(0)

is the energy of the flow perturbation in the steady Poiseuille flow and

Eosc(T ) = exp

(
8αKωRe

K0Wo4
sinT

)
.

Note that in this case the energyE(t,T ) evolves on the time scalet as if the basic flow is steady. The effects due to the pulsat
of the basic flow are ‘felt’ on the long time scaleT through the factorEosc(T ). As t approaches infinity,E(t,T ) goes to zero
confirming the stability of the pulsatile flow. However, an optimal energy growth

Gopt(t,T ) = Gopt,st(t)Eosc(T ) asWo → ∞, (34)

can occur. Here,Gopt,st(t) is the optimal energy growth for the steady Poiseuille flow at timet defined in Eq. (27). From
Eq. (34), the following bound for the quotientη between the maximum energy growthsGmax andGmax,st is derived

η = Gmax

Gmax,st
�exp

(
8αKωRe

K0Wo4

)
asWo → ∞, (35)

Fig. 11. Plots of the ratioη as a function of the Reynold numberRe for Wo = 30 and the upper bound defined in Eq. (35).

3 The transformationa(t) = exp[tM−1K ]b(t) applied to Eq. (31) gives rise to a decoupled system of differential equations in the var
bk(t) = (b(t))k , which is readily solvable.
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whereGmax,st = supt∈[0,∞)Gopt,st(t). As can be seen from Fig. 11, for the case ofα = 1 andKω/K0 = 2, the effects of

e Orr–
set of the

at the flow
nces may

ean flow
quently

of arterial
large

e

for

are
n-
pulsatile forcing can be safelyignored beyond the upper bound ofWo � 30 on the Womersley number since in this rangeη is
almost equal to 1, in agreement with the numerical results plotted in Fig. 10 (see Section 5).

7. Conclusions

In this paper we have re-examined the linear stability of pulsatile tube flow to axisymmetric flow perturbations. Th
Sommerfeld equation has been solved by means of a Galerkin projection onto a function space spanned by a finite
eigenfunctions of the longwave-limit Orr–Sommerfeld operator. It is shown that using few terms(N ∼ 15–20) in the Galerkin
expansion gives greater accuracy in comparison to the commonly employed Chebyshev basis. It has been found th
structures corresponding to the largest energy growth are toroidal vortex tubes, although non-axisymmetric disturba
likely exists having higher energy growth. These axisymmetric vortex tubes are stretched by shear stresses of the m
resulting in an initial energy growth. A time of maximum energy growth is realized, and the flow perturbation subse
decays. Maximum energy growth has been evaluated over a range of Reynolds and Womersley numbers characteristic
blood flows and microfluidic applications. Asymptotic solutions provided for the longwave limit as well as the limit of
Womersley numbers agree well with the numerical results, confirming the known linear stability of the flow.

Appendix A

The operator in Eq. (11) can be factored as follows

L̃(L̃+ χ2)φ = 0.

Here,χ2 = λRe and the general solution is given byφ = f1 + f2 such thatL̃f1 = 0 and(L̃+ χ2)f2 = 0, i.e.

φ = C1 + C2r
2 + C3rY1(χr) + C4rJ1(χr),

where, respectively,Y1(r) and J1(r) are the Bessel functions of first kind [35] andC1,C2,C3 and C4 are constants to b
determined by the boundary conditions. Since both the functions,φ

r and 1
r

dφ
dr

, must tend to zero asr → 0+, thenC1 = C3 = 0.

On the other hand, from the boundary conditions atr = 1, namelyφ
r = 1

r
dφ
dr

= 0, the following homogeneous linear system
the unknowns(C2,C4) emerges{

C2 + J1(χ)C4 = 0,

2C2 + [J1(χ) + χJ0(χ) − J1(χ)]C4 = 0.

Nontrivial solutions exist if and only ifJ2(χ) = 0 with J2(r) the Bessel function of first kind [35]. Consequently, there
infinitely many rootsχn, n = 1,2,3, . . . . The eigenvalues then readily follows asλn = χ2

n/Re and the corresponding eige
functions can be expressed as

φn = cn

[
r2 − rJ1(χnr)

J1(χn)

]
,

wherecn are constants. The set{φn} is orthogonal with respect to the scalar product (13) provided one choosescn = √
2/χn.

Appendix B

The matrices defined in Eq. (17) are given by

M = M0 + α2M2, K = K0 + αK1 + α2K2 + α3K3 + α4K4, H =αH1 + α3H3. (36)

Here, we have defined the following matrix functions

M0= C(1), M2 = −D(1),

H1 = i
[
D(L̃V1) − C(V1)

]
, H3 = iD(V1), (37)

K0 = Re−1B, K1 = −iC(V0), K2 = −2Re−1C(1), K3 = iD(V0), K4 = Re−1D(1),
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where the(n, k)-th entries of the constant matrixB and function matricesC(p), D(p), with p(r) ∈ L2([0,1]), are given

se time

y of

the Orr–
now
respectively by

(B)nk = −
1∫

0

L̃2hkhn
dr

r
,

(
C(p)

)
nk

= −
1∫

0

pL̃hkhn
dr

r
,

(
D(p)

)
nk

= −
1∫

0

p hkhn
dr

r
.

If Orr–Sommerfeld basis are used,M0, K0, K2 simplify to the following diagonal matrices

(M0)nk = δnk, (K0)nk = −Re−1χ2
nδnk, (K2)nk = −2Re−1δnk (38)

sinceC(1) = I and(B)nk = −χ2
nδnk (δnk is the Kronecker delta).

Appendix C

Let us solve Eq. (17) by assuming the following expansion for the time-varying column vectora(t)

a(t) = a0(t, T1, T2) + αa1(t, T1, T2) + · · · , (39)

whereT1 = αt , T2 = α2t are the advection and viscous time scales respectively. According to the multiscale method the
scales are considered independent variables. This implies that the time derivative operator is now as follows

d

dt
= ∂

∂t
+ α

∂

∂T1
+ α2 ∂

∂T2
. (40)

By substituting the expansion (39) fora(t) into Eq. (17) and using the time derivative operator (40) the following hierarch
perturbation equations up to O(α2) is derived

M0
∂aj

∂t
= K0aj + Sj (t), j = 0,1,2, (41)

where

S0 = 0, S1 = [
K1 + H1f (t)

]
a0 − ∂a0

∂T1

and

S2 = K2a0 + [
K1 + H1f (t)

]
a1 − ∂a0

∂T2
− ∂a1

∂T1
− M2

∂a0

∂t
.

For seek of simplicity in the calculations, it is assumed that the spatial Galerkin projection has been performed using
Sommerfeld basis, implying thatM0 = I andK0 is a diagonal matrix (see Appendix B). The general solution of Eq. (41) is
of the form

aj = eK0ta′
j + eK0t

t∫
0

e−K0τ Sj (τ)dτ, j = 0,1,2, (42)

wherea′
j

determined the initial conditions (hereafterb′ does not indicate derivatives). In particular, the O(1) solution is

a0(t, T1,T2) = eK0ta′
0(T1,T2), (43)

wherea′
0(T1,T2) is an unknown function of the slow time scalesT1 andT2 to be determined. From Eqs. (42) and (43) the O(α)

solution has expression as

a1(t, T1,T2) = eK0ta′
1(T1,T2) + eK0t

t∫
0

{
e−K0τ

[
K1 + H1f (τ)

]
eK0τ a′

0 − ∂a′
0

∂T1

}
dτ, (44)

wherea′
1(T1,T2) is an undetermined function. Using the Hadamard product definition, i.e.(A ◦B)ij = (A)ij (B)ij , the first term

of the integrand in Eq. (44) can be written as follows

e−K0τ
[
K1 + H1f (τ)

]
eK0τ = K1 ◦ Γ 1(τ ;0) + H1 ◦ Γ 1(τ ;ω),
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where the(i, j)-entry of the matrix of functionsΓ 1 is defined as

f the
(
Γ 1(τ ;ω)

)
ij

= e(χ2
i /Re−χ2

j /Re+iω)τ
.

Then in Eq. (44) the secular and nonsecular terms can be readily separated as follows

a1(t, T1,T2) = eK0ta′
1(T1,T2) + eK0t

t∫
0

{[(
K1 − diag(K1)

) ◦ Γ 1(τ ;0) + H1 ◦ Γ 1(τ ;ω)
]
a′

0

}
dτ

+ eK0t

t∫
0

[
diag(K1 ◦ Γ 1(τ ;0)a′

0 − ∂a′
0

∂T1

]
dτ. (45)

Note that the third term in Eq. (45) is of secular typet eK0t ; by imposing to vanish, the following equation fora′
0(T1,T2) is

derived

diag(K1)a′
0 − ∂a′

0
∂T1

= 0

which has the readily solution

a′
0(T1, T2) = ediag(K1)T1a′′

0(T2), (46)

wherea′′
0(T2) is an unknown function of the time scaleT2 to be determined. Solving the integrals in Eq. (45) gives

a1(t, T1,T2) = eK0ta′
1(T1,T2) + eK0t

[(
K1 − diag(K1)

) ◦ Π(t;0) + H1 ◦ Π(t;ω)
]
ediag(K1)T1a′′

0. (47)

Here, we have defined the matrix

Π(t;ω) =
t∫

0

Γ1(τ ;ω)dτ = Π0(t;ω) − Π0(0;ω)

andΠ0 has(i, j)-entry as

(
Π0(t;ω)

)
ij

= e(χ2
i /Re−χ2

j /Re+iω)t

χ2
i
/Re − χ2

j
/Re + iω

.

The governing equations fora′′
0(T2) and a′

1(T1,T2) are determined by imposing the vanishing of the secular terms o

O(α2) solution which is given by

a2(t, T1,T2) = eK0ta′
2(T1,T2) + eK0t

t∫
0

{
K2 ◦ Γ 1(τ ;0)ediag(K1)T1a′′

0 + [
K1 ◦ Γ 1(τ ;0) + H1 ◦ Γ 1(τ ;ω)

]
a′

1 − ∂a′
1

∂T1

+ [
K1 ◦ Γ 1(τ ;0) + H1 ◦ Γ 1(τ ;ω)

][
(K1 − diag(K1) ◦ Π(τ ;0) + H1 ◦ Π(τ ;ω)

]
ediag(K1)T1a′′

0

− [
(K1 − diag(K1) ◦ Π(τ ;0) + H1 ◦ Π(τ ;ω)

]
diag(K1)e

diag(K1)T1a′′
0

− [
(M2K0) ◦ Γ 1(τ ;0)

]
ediag(K1)T1a′′

0 − ediag(K1)T1
da′′

0
dT2

}
dτ. (48)

Removing the secular terms gives the following equation fora′
1

diag(K1)a′
1 − ∂a′

1
∂T1

= S′(T1,T2), (49)

where

S′(T1,T2) = −[(
K1 diag(K1) − diag(K1)2

) ◦ Π0(0;0) + diag(K2 − M2K0)
]
ediag(K1)T1a′′

0 − ediag(K1)T1
da′′

0
dT2

.
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Note that in Eq. (48) the secular terms depending upon the oscillatory part cancel each other exactly, implying that to the leading
n

if

as
cts

lle
using
order the solution does not depend upon the pulsatilty of the flow. Eq. (49) admits uniform solutionsif the resonance terms i
the sourceS′(T1, T2) are removed. This gives the following equation fora′′

0

−da′′
0

dT2
+ diag(K2 − M2K0)a

′′
0 = 0

readily solved as

a′′
0(T2) = ediag(K2−M2K0)T2a′′′

0 , (50)

wherea′′′
0 is the vector of initial conditions. Finally from Eqs. (50), (46) and (43) the O(1) solution has the final expression

a0(t, T1,T2) = eK0t ediag(K1)T1 ediag(K2−M2K0)T2a′′′
0 .

The leading order solutiona0 does not depend upon the pulsatility part and is agood approximation of the exact solution
α/Wo2 → 0. In this limit, the O(α) terms can be neglected.

Appendix D

Consider the function spaceF = span(s1, . . . , sn, . . .) spanned by

sn(r) = r2(1− r2)2T2(n−1)(r), n = 1, . . . , (51)

whereT2(n−1)(r) are the Chebyshev polynomials of even order defined as

T2(n−1)(r) = cos
[
2(n − 1)cos−1(r)

]
, n = 0,1, . . . .

It is readily proved that the set{sn}∞
n=1 satisfy the required boundary conditions and that it is orthogonal with respect to the

weighted inner product

〈f,g〉T =
1∫

0

W(r)fgr dr, W(r) = 1

r5(1− r2)4
√

1− r2
,

where the weight functionW(r) has been derived by using the normality of the set{T2n(r)} on the interval[0,1]. We wish to
point out that the Chebyshev basis are not orthogonal in the energy sense (i.e. with respect to the inner product 13) andr → 1−
they do not have characteristic decay behavior as the Orr–Sommerfeld do (see Figs. 1 and 12). From Eq. (19), if one negle
the oscillatory flow component, the least stable eigenvalue of the matrixM−1K predicts the stability of the steady Poiseui
flow. Set the parametersα = 1 andRe = 2000. ForN = 10,15, . . . ,40 the least stable eigenvalue has been evaluated by

Fig. 12. The first 6 special Chebyshev basis.
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Fig. 13. Relative errors curves for the least stable eigenvalue of steady Poiseuille pipe flow forα = 1andRe = 2000.

both the basis{φn}N
n=1 and{sn}N

n=1. Taking the solution forN = 40 to be the ‘exact’ solution(λ(40) = −0.06375− 0.93676i
in agreement with [27, p. 506]), the relative error

e =
∣∣∣∣λ(N) − λ(40)

λ(40)

∣∣∣∣ ∼ N−d , N = 10,15, . . . ,35,

of the first least stable eigenvalue is plotted in Fig. 13. If the Chebyshev basis are used (d = 19.6), the error drops off faster bu
is always greater than the relative error if the Orr–Sommerfeld basis are used (d = 9.0). As an example, forN = 15 the error if
Orr–Sommerfeld basis are used ise ∼ 10−8 whereas if the Chebyshev basis are employed, one hase ∼ 10−3.
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