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Abstract

We revisit the problem of the stability of pulsatile pipe flow for axisymmetric perturbations. In contrast to the earlier approach
based on the Chebyshev expansion for the spatial discretization [J. Appl. Mech. ASME 53 (1986) 187], we use the set of the
eigenfunctions derived from the longwave limit of the Orr—Sommerfeld equation. We show that the Orr—Sommerfeld basis
gives greater accuracy than the Chebyshev basis if fewer terms are used in the Galerkin expansion. For the time evolution of
the flow perturbation, instead of the usual Floquet analysis, a different representation for the solution of the periodic system
of linear differential equations is employed. We found that the flow structures corresponding to the largest energy growth are
toroidal vortex tubes. They are stretched by the shear stress of the mean flow so that a maximum energy growth occurs. The
flow perturbation subsequently decays due to viscous effehtsmaximum energy growth is then evaluated over a range of
Reynolds and Womersley numbers. Asymptotic solutions provided for the longwave limit as well as the limit of large Womersley
numbers agree well with the numerical results, confirming the known linear stability of the flow.
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1. Introduction

The study of pulsatile tube flow appears @vh been first considered in the context of arterial hemodynamics in the mid-
1950s. Womersley and co-workers obtained an exact solution of the Navier—Stokes equations for the fully-developed velocity
profile of a oscillatory, incompressible flow in a circular tube2]1 The stability and behavior of arterial blood flow in response
to perturbations (receptivity) — whether arising from a cardiac fluctuation or a vessel wall non-uniformity or constriction — can
have significant implications for altered vascular wall shear stresses and overall vascular impedance. For example, changes in
normal wall shear stress distributions are believed to play a role in atherogenesis whereas a transition to turbulent flow within a
large vessel can lead to substantial increases in flow resistance and increased cardiac load [3].

Pulsatile flow has also recently found renewed significance ipfiaation to MEMS micofluidic engineeing applications.

A common feature of many of the microfluidic devices described in the literature that incorporate micro-scale pumping is that
the flow is a pulsatile one [4,5]. The case of flow pulsations as a potential laminar mixing strategy for MEMS devices have also
been examined in [6,7]. The relevance of pulsatile flow for arterial flows and certain microfluidic applications has thus provided
the motivation of the present study in which we re-examine its stability characteristics.
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The linear stability of the limiting case of steady Poiseuille flow in a pipe has been investigated extensively by a number
of authors [8-15]. Such an analysis shalat all the eigenmodes are damped, although an initial energy growth of the flow
perturbation can occur due to the non-normality of the Ormf@erfeld operator (i.e. the opsor does not commute with
its adjoint). For a non-normal operatdrf,17] the associated eigenmodes do mbilgt orthogonality and consequently their
superposition can result in an energy growth.

In this paper we revisit the problem of the linear stability of pulsatile pipe flow. We shall consider only axisymmetric
perturbations and study their transient energy growth, although we point out that non-axisymmetric disturbances may likely
exist having higher energy growth as for the case of steady pipe flow [10,17]. The starting point is the fourth-order Orr—
Sommerfeld equation which is satisfied by the Stokes stream function for axisymmetric flow perturbations [18]. We shall
consider the approach proposed in [14,15] where the set of eigenfunctions of a simplified Orr—Sommerfeld operator is used
for the solution of the Orr—Sommerfeld equation by the Galerkin method. In contrast to the earlier approach [19] in which
a Chebyshev expansion was used, our spatial discretization is based on the eigenfunctions derived from the long-wave limit
of the Orr—Sommerfeld equation. We note that these eigenfunctions are essentially the eigenmodes of the Stokes flow for a
pipe. The comparison of the two eigenbasis shows that for smaller number ofX¥erib—20 in the Galerkin expansion, the
Orr—Sommerfeld eigenbasis gives smaller relative error then the Chebyshev basis, although it is well known that the Chebyshev
basis gives smaller error than any powerAf1 asymptotically forN — oco. Nevertheless, the use of the Orr—Sommerfeld
basis seems to be a very good candidate for the construction of lower order models by the Galerkin method: fewer eigenmodes
would be sulfficient to retain relatively greater accuracy than the Chebyshev basis.

For the time evolution of the flow perturbation, instead of the usual Floquet analysis, a different representation for the
solution of the periodic system of linear differential equations is employed. The interested reader may refer to Refs. [20-25] for
other time-dependent flow &ttty analyses. An excellersummary on the stability of timperiodic flows is found in [26].

For the case of axisymmetric perturbations, it has been found in this work that the flow structures giving the largest energy
growth are toroidal vortex tubes. These axisymmetric flow structures are stretched by the shear stress of the mean flow along
the streamwise direction and reach a point of maximum energy growth. Beyond this point a decay occurs due to viscous effects.
Maximum energy growth of the flow perturbation has been evaluated over a range of Reynolds and Womersley numbers; the
parametric regime considered has been chosen in part due to their relevance to arterial blood flow and also to microfluidic
applications. Our numerical results are found to be in good agreement with asymptotic solutions obtained for the long-wave
limit as well as the limit of large Womersley numbers.

The determination of the initial conditions which give rise tothaximum energy growth appeacstie relevant, if transition
to turbulence is thought as emanating from nonmodal energwty mechanisms, i.e. ‘bypassansition’ (see [27, p. 402]
and [28]). Another viewpoint on the transition to turbulenes been proposed in [29-31]; herepadific feedback mechanism
to transition in channel flows has been identified based on a self-sustaining process. This approach has led to the discovery of
exact travelling wave solutions for pipe flows [32,33].

Recent experimental results of Hof et al. [34] suggest that both nonmodal energy growth and self-sustaining mechanism
could be important to understand pipe flaartsition. In their experimental work litas been found that the finite amplitude of
the perturbation necessary to trigger transition in a pipe flow scalegRes®) with Re the Reynolds number. As reported
by Hof et al. [34] regarding the exponent of this scalindpe’ exponent. . is in agreement withecent estimates for pipe flows
where transient growth plays a role. Thgponent also indicates a generic trangitiso that a challenge to theory is to provide
a more definitive indicator which will permit a distinction between competing ideas to bé'made

Along these lines, we believe that the semi-analytical approach presented in this paper provides a framework for examining
non-axisymmetric perturbations and their linear or nonlinear space-time dynamics. The highlight of the present work is the
possibility of constructing Galerkin lower order models for pipe flows using fewer eigenmodes yet retaining greater accuracy.

2. The Or—Sommerfeld equation for perturbed, oscillatory pipe flow

Consider the pulsatile flow dynamics in a @ipf circular crossection of radius® driven by an imposed periodic pressure
gradientd P/dz. The fully-developed streamwise velocit(r, r) satisfies the following iitial boundary value problem
aw 10 ( 8W> 10P aP
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with the no-slip condition athte boundary of the pipe, and the boundedness of trexiglfield at the centerline of the tube.
The solution for the radial velocity profil& (r, 7) is given by [1,2]
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whereR is the tube radius/g is the Bessel function of the first kind of order zero [3h]js the viscosity, and the parameter
Wo, known as the Womersley number, is definedvily = /pwR?2/ .. It may be interpreted as either the ratio of oscillatory
inertia to viscous forces or as a Reynolds number for the flow usid@s the velocity scale. Still a third interpretation is as a
measure of the ratio of the tube radius to the Stokes layer thickpessv/w)1/2.

In order to study the stability of the basic flow field (2), the axisymmetric velocity perturbatjos (;, ug =0, u; = w) is
superimposed onto the basic flow,

ur=u(z,r,t), up=0, u;=W@t)+w(zrt), p=pri)+P1). (3

Here, (z, r, #) define a cylindrical coordinate system wigkaxis along the streamwise directiom,-(ug, u;) are the radial,
azimuthal and streamwise velocity components frid the pressure. The velocity field (3) has to satisfy the incompressible
Navier—Stokes equations
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whereD(-)/Dt, V2(.) are the material derivative and the Laplacian operator in cylindrical coordinates respectively. Substituting
the velocities (3) into Eq. (4) and neglectingnlinear terms, yield the following equations
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governing the linear dynamics of the axisymmetric flow perturbationv, p). We assume periodicity along the streamwise
direction and letr denote the streamwise wave number. The Stokes stream fubiction, 1) = ¥ (r, t)€%% allows the following
representation of the radial and streamwise velocity components of the perturbation
LoV _ YO0 e,y 20 L0V

r 0z r T ror roor

(6)

and the condition of incompressibility is automatically satisfied in Eq. (5). Eliminating the perturbation pre$samrethe two
first equations of (5) and using Eq. (6), the following Orr—Sommerfeld equatio# foan be obtained (see also [8-18])

Ly — WiaBy +ia(—y LW + WLY) = Re 122y,
M<oo, 1%<oo aSr—>0+, 7
r r or )

vl )= %(1, t)=0.
ar

Here, the differential operator is defined by

and the boundary conditions reflect the boundedness of the flove aetiterline of the pipe and the no-slip condition at the
wall. In order to derive Eq. (7) the time, radial lengths, streamwise lengths and velocities have been scaledwithUy
respectively. HereT = R/ Up is a convective time scal& is the tube radius. = 27/« is the wavelength of the perturbation
and Uy a characteristic velocity. The Reynolds and Strouhal numbers are defined as

_ UpR

Re , St=wT. (8)
v
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The basic velocity fieldv (see Eq. (2)) is in the dimensionless form
W(r,t) = Wo+ Wy expir St) 9)
and the functiond¥y and W1 are given by

1 Jo(iS/ZWOr)]
Wo=Ao(l—r?), Wi=ArZ|1- 2 — |
o} od—r") 1 1 [ NERTS)

: (10)
where the non-dimeimnal amplitudesAg and A1 have expression as

_ KoR? s K, R?
T AuUy’ 1_/,LStReU0.

Ag

In the following it is chosenlg = KoR?/4u (characteristic velocity of steady Poiseuille flow) which yieldg = 1 and
A1=4K,/(KgStRe).

The flows considered in this paper are characterized by the nurReers50-5000 andVvo = 10-30; the corresponding
frequency regime is given by Strouhal numbets~ 0.1-20. This parametric regime was chosen so as to include cases of
arterial blood flows as well as MEMS-based pumping.

3. Galerkin method

We now derive the time-periodic system of first order linear differential equations which governs the dynamics of the
flow perturbation. Following the approach used in [14,15] where the eigenmodes of a simplified Orr—Sommerfeld operator
are considered, for the spatial discretization of the Orr—Sommerfeld equation (7) we use a finite set of the eigenfunctions of
the long-wave limit Orr—Sommerfeld operator (i.e. Orr—Sommerfeld basis). Other eigenbasis can be chosen for the spatial
Galerkin projection, as for the example Chebyshev polynomials. In Appendix D we report numerical results showing that the
Orr—Sommerfeld basis gives better accuracy than the Chebyshev basis if fewMerni$—20 in the Galerkin expansion are
used.

3.1. The long-wave Orr—Sommerfeld basis

Exact solutions of the Orr—Sommerfeld equation are difficult to obtain for an arbitrary wave nanibéhe limit ofo — 0,
which represents the case of a long-wave perturbation, Eq. (7) admits the simple expansion

e¢]

V() =Y andn(r) €Xp(—hnt).
n=1

The set of coefficient'f,?a,,}fl‘;1 is defined by the initial conditions and the set of eigenfunctim;gr)};’lill and eigenvalues
{)L,,};Oz1 satisfy the eigenvalue problem

["zd’n = —ReAn ["(f’n ,

1 106, N

;¢n<oo, ; or < 00, r—20 s (11)
d

On =_¢n =0 atr=1.
ar

Here, £ = rd/dr(r—18/dr) is a reduced operator and the eigenvalues are giveh, by X,?/Re where x, are the roots of
J2(x) = 0. One readily finds (see Appendix A for details)
V2 ( B Jl(an))

o= om

n
where J1(r)and Jo(r)are the Bessel functions of first kind of order 1 and 2, respectively [35]. The first six eigenfunctions,
shown in Fig. 1, exhibit the characteristic behavior of Bessel's functions: increasing number of extrema and monotonically
decreasing maxima. Since the perturbation is bounded for0™, this implies¢, = d¢,/dr = 0 atr =0, and this may be
verified directly from Eq. (12).

(12)

1 Note that this set represents the eigenmodes of the Stokes flow for a pipe.
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Fig. 1. The first 6 long-wave ®rSommerfeld eigenfunctions.
The function spac& = span¢y, - - ., dn, - . .) With the following inner product
; d 18f8 d
~ ar g ar
—/fﬁg—=/———, (13)
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is a Hilbert space and the set of elgenfunctn{)cyi,@;}oo ,is a complete orthonormal set. We shall refer to the{«ﬁg}‘” , asthe
Orr—Sommerfeld basis. The inner product (13) mduces the following norm

of of*d
1£I2 = (f. £*) = /8—{%7’—280 Dlao.
0
This norm is twice the long-wave limit of the enerdy f, ¢) of the axisymmetric velocity field ; = —%iozei"‘Z andwy =
}%e""z (see Eq. (6)), defined as
af af*
& = dr == T 14
(f.0= /(“f“f"‘wfwf)” f(a e )T (14)

0

3.2. Galerkin projection

Consider now a complete bas{ilsk(r)},‘iil for the function spacer where{hk(r)},f‘;1 can be the Orr—Sommerfeld basis

{d;,,},fo 4 or any other basis. Let us define its finite dimensional subsﬁaeesparihl(r) ho(r),...,hn(r)], wheren is
the number of function basis. In order to solve the Orr—Sommerfeld equation (7) we seek an apprOX|mat|0n stream function
1//(r t) € Fas

N
Y0 =Y apOhi(r), (15)
k=1
where{ak(t)}N ,are time-dependent coefficients be determined. Undéethis expansion the boundary conditions in Eg. (7)
are automatically satisfied. To derive the equatlons{&qg(t)}N 1 We shall project the Orr—Sommerfeld equation (7) onto the

approximation function spacie‘ Using the inner product in Eqg. (13), theth projection of the Orr—Sommerfeld equation in
Eq. (7) appears as

1
—/[&ZH — Wia3y +ia(—FLW + WLY) — R—lezzlﬁ]hn‘i—’ =0. (16)

0
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By substituting the expansion (15) into Eq. (16), it is possible to show that the set of time-varying fur{la;;ic:r)}sfl":l satisfies
a finite system of periodic, first-order linear ordinary differential equations. In matrix notation, the system is given by

da
dr

Here,a(?) is a column vector of dimensioN whosen-th component is;, (1) and the constant matricds, K, H of dimension
(N x N) are defined in Appendix B. From Eg. (14) the energy of the velocity field associated to the approximation stream
function s is expressed as

M — = [K + Hexp(itst)|a (7)

EW. 1= %a*(t)Ma(t), (18)
wherea* denotes the Hermitian conjugate. Since the energy is a positive definite scalar quantity, this implies that thé matrix
has to be positive definite and therefore its inverse exists. Thus Eq. (17) can be rewritten as

da

=
The fundamental matri&(r) satisfies the system (19) with initial conditioB%0) = I, wherel isthe N x N identity matrix.

[M~IK + M~ IHexp(ir st ]a (19)

4. The energy growth

The time evolution o&(z), for anyt, depends entirely on the fundamental ma@ig ) for the system (19), evaluated only on
the intervak € [0, T] whereT = 27 /St is the dimensionless period of oscillations. By decomposing the time-as+mT with
m an integer, the solution can be written as

a(t) =G(r)G"(Ma(0), tel0,Tl, (20)

where the vectoa(0) defines the initial conditions. Extensive compudas (e.g. Runge—Kutta method) show that the matrix
G(T) has distinct eigenvalue{sak},12’:1 (a.k.a. the characteristic multiplig@rahich allows the diagonalization

G(T)=QexpIrmn QL. (1)

Although the columns of) are linearly independent, they are in general not orthogonal; this is a consequence of the non-
normality of the Orr—Sommerfeld operatd’he diagonal entries of the matrik are the characteristic exponer{t;s(},i":1

which are related to the characteristic multipliers by
_npy

=

The solution is strictly stable if all the characteristic exponentsie strictly in the left hand part of the complex plane, i.e.

Re(yx) < 0.
The initial perturbation, defined by the vecti0), is characterized by the stream functigiy, 0) = Z,@’Zl ar(0)hy(r) (see
Eq. (15)). Its energy growtf (¢), at timer, can be evaluated by means of Eq. (18) as follows

_ &0 _ a0*EMaO)
EW,0 a0*EQa)’
Here, the matrixE(r) is given by

E() = [G"(M]*G()*MG (x) G™(T). (23)

Yk (22)

g

The optimal initial conditioragpt which gives the maximum growiiopi(t) attained at time satisfies the following eigenvalue
problem

E()aopt= Gopt(?) E (0)aopt. (24)

Note thatGopt(#) as function ofz, should be thought as the envelope of the epagplution of individual optimal initial
conditionsappt giving the maximum growtl§iopi(t) at timet (see also [36]). The largest energy grohax for the pulsatile
flow, attained at time = rmax, iS then given by

Omax=sup Gopt(?). (25)
t€[0,00)

Note thatGmax can be alternatively evaluated via an adjoint method as in [27,37,38].
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For the case of steady Poiseuille flow the fundataematrix is readily derived from Eq. (19) as

Gst(t) = exp(tM ~1K). (26)
The optimal energy growtfiopt, st(?) at timet is then given by the following expression
Gopt st(t) = | GE(HMGs(1) |, (27)

where the matrix nornjj - || can be evaluated by means of thegilar value decoposition 27,36].

5. Results

As an example, consider an axial perturbation with wavenuraberl and a strongly pulsatile forcing of the basic flow
characterized by the ratik,, / Ko = 2. We shall use the long-wave Orr—Sommerfeld basis with a Galerkin expansion consisting
of N =30 terms. We examine the stability of a basic pulsatile flow state characterizd=by, andwo = +/Re. The charac-
teristic exponent$yk},’<‘/:1 (see Eg. (22)) are plotted in Fig. 2 in the complex planeRe= 1500. For comparison purposes,
the plot of the eigenvalues of the steady Poiseuille flow is diswa in the figure. The real part of the characteristic exponents
are slightly more negative than their stgadunterparts ndicating that the pulsatile flow is glitly more stabl¢han the steady
Poiseuille flow [19]. The characteristic exparg having the highest damping in Figag spurious due to the numerical error
in evaluating the fundamental matiix(T) by the Runge—Kutta method. These spurious modes are ignored in the evaluation of
the energy growth.

A plot of Gopt(?) vs.t is shown in Fig. 3 foRe = 3500 and two different values of the Womersley numiver= 10 and 30.

Due to the non-normality of the Orr—Sommerfeld operafigpt(¢) is not a monotonic decreasing function of the timé first

increases towards a maximubmax and then decays. The details of the flow structures at the point of maximum energy growth
Omax attained at time = rmax are shown in Figs. 4 and 5 for the corresponding Womersley number of 10 and 30 respectively.
These structures are toroidal vortex tubes. They are relatively more stretched along the streamwise direction by the mean flow
as the Womersley numb#vo increases. The increased stretching of the flowcstire implies an increased velocity field and

a corresponding increased flow energy. This confirms the higher value of the maximum energy @rawfbr the case of
Womersley numbewo = 30 as one can see from Fig. 3.

As an example of the time evolution of the flow perturbatiaansider the initial conition giving the largest energy growth
Gmax for the case ofwo = 20 andrRe = 1000 (dimensionless period oscillation= 18.2). At time ¢ = 0 the stream function
of the initial flow perturbation is given in Fig. 6. As time evolves, the mean shear stress tends to stretch the vortex tubes, so
that at timer = rmax= 11.8 (see Fig. 7) the flow configuration is such that its energy growth attains a maxiguunr< 1.5).
Beyond this time the vortex tubes tend to migrate closer to the centerliae®] where the effectiveness of the shear stress is
diminished. The flow structure then decays in time due to viscous effects as shown in Figs. 8 and 9.

4 . . . . . .
O [ ]
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3t © : * |
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0© ° .
o O (@) o L,
0 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
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Fig. 2. Plots of the characteristic exponehtﬁ},’(\’=1 for Re = 1500,St =1, Wo = +/Re, K,/ Kg = 2 and wavenumber = 1. For comparison
purposes, the plot of the eigenvalues of the steady Poiseuille flow is also shown. (Galerkin expansion conaistirgpderms.)



244 F. Fedele et al. / European Journal of Mechanics B/Fluids 24 (2005) 237-254
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Fig. 3. The optimal energy growtdiopt(r) as function of the time at which it occurs(Re = 3500 andwo = 10, 30). See Figs. 4, 5 for the
corresponding stream functiqh(r, t) at timet = tmax When the max energy growthinax occurs.

Wo=10 Re=3500 G__=1.2

Fig. 4. Stream function of the optimal disturbance at tiraermax when the max energy growthnax= 1.2 occurs forwo = 10, Re = 350Q

Finally the flow response to axisymmetric perturbations with wavenumbketl is summarized in Fig. 10. The maximum
energy growthGmax is plotted as a function of the Reynolds numiger in the range 50-5000, for values of the Womersley
numberwo ranging between 10 to 30. The corresponding frequency regime is characterized by Strouhal suml@ets-20.

For comparison, the plot of the maximum energy gro@hax st for the case of steady Poiseuille flow is also displayed. For
largerwo, the stability characteristics of the steady Poiseuille flow are recovered. This is to be expected, since the amplitude
of the pulsations scales as(\®2). Fora = 1 we find an upper bound oflo ~ 30 beyond which the pulsatile forcing

has negligible influence on the stability of the pulsatile flow. As the Womersley number is reduced, the flow perturbation is
characterized by successively smaller maximum energy growth than its steady counterpart (see Fig. 10). This may provide a
possible explanation for the odrsed suppression of the tutbuce spots in pulsatile pipe flow transition for low frequency
regimes (see [19] and references therein). The numerical results also provide a minimum Reynold n&aherof370 that

has to be surpassed in order to yield an energy growth. This result is found to be independent of the Womersley number. It
has been reported for steady Poiseuille flow that amggngrowth occurs at the threshold Reynolds numbRemin, = 3697

(see [27], p. 117, Fig. 4.5). Thus, far= 1, we find that the minimum Reynolds nber for steady and pulsatile cases are
almost indistinguishable. This has immediate implications for pulsation-induced mixing on the micro-scale: for the typically
low Reynolds numbers found in microchahflews, it appears that linear pertutins to multi-fluid configurations will be
ineffectual.
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Wo=30 Re=3500 G__=2.6

max

Fig. 5. Stream function of the optimal disturbance at tireermax when the max energy growthmax = 2.6 occurs fowo = 30 andRe = 350Q

Wo=20 Re=1000 t=0

0 1 2 3 4 5 Z s

Fig. 6. Stream function of the optimal disturbance at time0 for Wo = 20 andRe = 100Q

Wo=20 Re=1000 t=t,,711.8s

Fig. 7. Stream function of the optimal disturbance at tmermayx for Wo = 20 andrRe = 100Q
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Wo=20 Re=1000 t=2Tp=36.4
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Fig. 8. Stream function of the optimal disturbance at time2T for Wo = 20 andRe = 100Q
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Fig. 10. Max energy growtmax as function of the Reynold numbRe for different values of the Womersley numbab. The plot 0fGmax st
for the case of steady Poiseille flow is also reported for comparison.
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Table 1

x (asymptotic) Yk (numeric) 11— 7/ vkl
—0.0176— 0.0818i —0.0198— 0.0814i 00266
—0.0473— 0.0723i —0.0499— 0.0738i 00341
—0.0900— 0.0696i —0.0907— 0.0690i Q0074
—0.1460— 0.0685i —0.1455— 0.0682i Q0031
—0.2151— 0.0679i —0.2145— 0.0678i 00024
—0.2973— 0.0676i —0.2968— 0.0675i Q0016
—0.3927— 0.0673i —0.3923— 0.0673i Q0011
—0.5013— 0.0672i —0.5009— 0.0672i Q0007
—0.6230— 0.0671i —0.6227— 0.0671i Q0005
—0.7579— 0.0670i —0.7576— 0.0670i 00004
—0.9059— 0.0670i —0.9057— 0.0670i Q0003
—1.0671— 0.0669i —1.0669— 0.0669i 00002
—1.2415— 0.0669i —1.2413— 0.0669i Q0001
—1.4290— 0.0669i —1.4289— 0.0669i Q0001
—1.6297— 0.0668i —1.6296— 0.0668i Q0001

6. Asymptotic solutions

Analytical solutions of the system (19) can also be derived in two distinct and important limits. The first case is for a
long-wave perturbation when <« 1. The second solution is valid for high Womersley numbers & o).

6.1. The case of long-wave perturbations

In the long-wave limit there is a separation of the inertial, advection and viscous time scales, which suggests using a mul-
tiscale perturbation approach. Here, the streamwise wave numdrsves as the small parameter in the multiscale expansion.
Assume that Eq. (17) has been derived using the Orr—Sommerfeld basis. The long-wave limit solution (see Appendix C for
details) for the fundamental matri(z) is given by

G(t) =exg (Ko + o diag(K 1) + a?diagK o — MoK ) )t] asa/Wo2 — 0. (28)
We can conclude that in the limit of/Wo? — 0, the characteristic exponer{t;szyc},’(‘/:1 are equal to

1

2 ' od 2

ykz_X_k<1+a2/¢,§—r> - —a2+ia<—1+/r¢k£¢k dr). (29)

Re r Re
0 0

Note that Eq. (29) shows no dependeng®n the oscillatory part of the flow (i.&/0) and gives the eigenvalues for the case
of the steady Poiseuille flow. Thus in thenig-wave limit, the perturbation is not affted by the pulsatile part of the flow if the
wavelength of the disturbandeis much greater than the thicknekss of the Stokes layer, i.ea/Wo2 — 0.

Consider the pulsatile basic flow characterized by the nunees 1500 St =1, Wo = 38.7 andK,,/Kg = 2 and assume
an axial perturbation with wavenumber= 0.1. We shall use the Galerkin expansion (15) consistingvct 30 terms. In
Table 1 it is shown a comparison between the eigenvalues obtained by numerically solving the fundamental matrix and the
analytical eigenvalues (29). As one can see the agreement between numerical and analytical results is quite good.

6.2. The case of Womersley humipér — oo

The exact analytical solution of the system (19) can be obtained provided the two mitridés andM ~1H commute.
In general, these two matrices do not commute, except for case of large Womersley nuwibesscp). In this limit, the
amplitudeW of the oscillatory part of the basic flow (9) tends to l@arly uniform, since the thickness of the Stokes boundary
layer tends to zero. The following asymptotic expresitom W1 then holds
~ 1 4K,

Wi W

=—— asWo— oo. 30
1= Wo? Ko (30)

2 n Eq. (10), for fixed radius, if Wo — oo the second term in the square brackets, involving Bessel's functions, goes to zero.
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This implies that the matrik (see Eq. (19) and Appendix D) simplifies as follows
H~ —iaVTflM asWo — oo,

and the system (19) reduces to the form
da
dr

This system can be solved analytically since the scalar multiple of the identity matrix commutes with any other matrix. The
solution is given by

= [M 1K i Wyl exp(irst ]a. (31)

da K in7 s7 —1
a(t,T):exp[ ol (sm . CO!

+1
K()WO2 T T
whereGst(?) is the fundamental matrix for the case of steady Poiseuille flow (see Eq. (26)) aa@) are appropriate initial
conditions. Here the solution depends upon the time scatel the long time scal& = ¢ St. In Eq. (32), if alsox/Wo? — 0,

then the exponential factor is almost equal to 1 &gglr) tends to the long-wave limit solution (28).
The energy of the flow perturbation can be evaluated by means of Eq. (18) with the result

E(t,T)=Est(t)€osdT) asWo — oo. (33)

>}Gst(t)a(0) asWo — oo, (32)

Here,
1

Estlt) = 58" (0G5(MGst()a(0)

is the energy of the flow perturbation in the steady Poiseuille flow and
8aK,Re . )
EosdT) =exp| ————sin7T ).
osd7) p( KoWo?

Note that in this case the ener§yr, 7)) evolves on the time scales if the basic flow is steady. The effects due to the pulsatility

of the basic flow are ‘felt’ on the long time scalethrough the facto€qsd(7). As ¢ approaches infinity (¢, 7) goes to zero,
confirming the stability of the pulsatile flow. However, an optimal energy growth

Gopt(t, T) = Gopt st(t)Eosd7) asWo — oo, (34)

can occur. HereGopt st(t) is the optimal energy growth for the steady Poiseuille flow at tingefined in Eq. (27). From
Eqg. (34), the following bound for the quotientbetween the maximum energy growisax andGmax st is derived

8uK,R
n= Gmax < exp( © 4e> asWo — oo, (35)
Omax st KoWo
L Gmax/ Gmax,st
1.2 Bmad Bmax.s /Upper bound Eq. (35)
I ———— =
AN
Wo=30
08} i
06 i
04 .
0.2t i
Re
% 1000 2000 3000 4000 5000

Fig. 11. Plots of the ratig as a function of the Reynold numbee for Wo = 30 and the upper bound defined in Eq. (35).

3 The transformatiora(r) = expirM ~1K 1b(¢) applied to Eq. (31) gives rise to a decoupled system of differential equations in the variables
by (t) = (b(1))x, which is readily solvable.
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where Gmax st = SUR¢[0,00) Gopt st(t). As can be seen from Fig. 11, for the casexof 1 and K,/ Kq = 2, the effects of
pulsatile forcing can be safelgnored beyond the upper boundwb ~ 30 on the Womersley number since in this range
almost equal to 1, in agreement with the numerical results plotted in Fig. 10 (see Section 5).

7. Conclusions

In this paper we have re-examined the linear stability of pulsatile tube flow to axisymmetric flow perturbations. The Orr—
Sommerfeld equation has been solved by means of a Galerkin projection onto a function space spanned by a finite set of the
eigenfunctions of the longwave-limit Orr—Sommerfeld operator. It is shown that using few t&rmsl5-20 in the Galerkin
expansion gives greater accuracy in comparison to the commonly employed Chebyshev basis. It has been found that the flow
structures corresponding to the largest energy growth are toroidal vortex tubes, although non-axisymmetric disturbances may
likely exists having higher energy growth. These axisymmetric vortex tubes are stretched by shear stresses of the mean flow
resulting in an initial energy growth. A time of maximum energy growth is realized, and the flow perturbation subsequently
decays. Maximum energy growth has been evaluated over a range of Reynolds and Womersley numbers characteristic of arterial
blood flows and microfluidic applications. Asymptotic solutions provided for the longwave limit as well as the limit of large
Womersley numbers agree well with the numerical results, confirming the known linear stability of the flow.

Appendix A

The operator in Eq. (11) can be factored as follows
L+ xPep=0.
Here,x2 = A Re and the general solution is given by= f1 + f» such that’ f; = 0 and(£ + xz)fz =0,i.e.
¢ =C1+ Cor? + CarY1(xr) + CarJ1(xr),

where, respectivelyY,(r) and J1(r) are the Bessel functions of first kind [35] adf, C», C3 and C4 are constants to be
determined by the boundary conditis. Since both the functiong, and% d‘f , must tend to zero as— 0%, thenC; = C3=0.
On the other hand, from the boundary conditions &at1, namely% = %%‘% = 0, the following homogeneous linear system for
the unknowng Cy, C4) emerges
{ Co+ J1(x)Cs =0,
2C2 + [J100 + xJo(x) — J1()1C4 =0.

Nontrivial solutions exist if and only if/2(x) = 0 with J>(r) the Bessel function of first kind [35]. Consequently, there are
infinitely many rootsy,, n =1,2,3,.... The eigenvalues then readily follows &as = X,%/Re and the corresponding eigen-
functions can be expressed as
2 rJl(an)]

J1(xn) '

wherec, are constants. The sg#,} is orthogonal with respect to the scalar product (13) provided one chogses/2/ .

%=%P

Appendix B

The matrices defined in Eq. (17) are given by
M=Mg+a?Mp, K=Kg+aKi+a?Ks+a3Kz+a*Ks, H=aHi+a3Hs. (36)
Here, we have defined the following matrix functions
Mo=C(),  Ma=-D(),
Hi=i[D(£V1) — C(V)], H3=iD(Vy), (37)
Ko=Re 1B, Kj=—iC(Vgy), Kp=-2Re 1C(1), Kz=iD(Vp), Ka=Re 1D(1),
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where the(n, k)-th entries of the constant matrB® and function matrice€(p), D(p), with p(r) € L([0, 1]), are given
respectively by

1
~ dr 5 dr dr
Bk =— f Cohghn—.  (C(p))y =~ / pLhghn—.  (D(p)), =~ / P hihn—.
0 0 0
If Orr—Sommerfeld basis are uséd g, Kq, K2 simplify to the following diagonal matrices

Mok =8nk. Kok = —Re %28k, (K2)uk = —2Re L5, (38)

sinceC(1) =1 and(B),; = —X,%Snk (8, is the Kronecker delta).

Appendix C

Let us solve Eq. (17) by assuming the following expansion for the time-varying column \&ctor
a(t) =ag(t, Ty, To) +aay(t, T, To) + - -, (39)
whereTy =at, T = o2t are the advection and viscous time scales respectively. According to the multiscale method these time
scales are considered independent variables. This implies that the time derivative operator is now as follows
d 9 pa g2
—=—t+a——+a" —.
d ot Ty 0T>

By substituting the expansion (39) fafr) into Eq. (17) and using the time derivative operator (40) the following hierarchy of
perturbation equations up to(&) is derived

(40)

aaj .
M0W=Koaj+3j(t), j=012 (41)
where
dag
=0, =[K H -—
So S1=[K1+H1f(1)]ag a7
and
dag dag dag
=K K H - - —= —My—.
Sp=Koap+ [K1+H1f()]ag T, 9T 275,

For seek of simplicity in the calculations, it is assumed that the spatial Galerkin projection has been performed using the Orr—
Sommerfeld basis, implying thdd g = | andK is a diagonal matrix (see Appendix B). The general solution of Eq. (41) is now
of the form

t
a; =eforg Kot [ gKoTs (1)dr, j=0,1,2 42
j ' j J
0

wherea’/. determined the initiaconditions (hereaftel’ does not indicate derivatives). In particular, thélOsolution is

ag(r, Ty, Tp) = 0l (1 1), (43)

whereaE)(Tl, T») is an unknown function of the slow time scalBsand75 to be determined. From Egs. (42) and (43) the)O
solution has expression as
t

8 /
ay (1, Ty, Tp) = eX0'a (T1, Tp) + X! /{e—KOT[Kl +H1f (D] a — 8—;2 } dr, (44)
0

wherea/l(Tlﬁ T») is an undetermined function. Using the Hadamard product definitiotAi€B);; = (A);; (B);;, the firstterm
of the integrand in Eq. (44) can be written as follows

e [Kq +H1 /(0] =K1 0 T'1(7:0) + Hyo Ti(r ),
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where the(i, j)-entry of the matrix of functiond™4 is defined as

2 2 .
(Fl(f;a)))l.j _ X /Re=xj/Retim)T

Then in Eq. (44) the secular and nonsecular terms can be readily separated as follows

t
a(t, T, To) = Kotai(Tl’ T,) + efof /{[(Kl —diagK1)) o I'1(7; 0) + Hy o 1 (t; w)]ag} dr

! /
+ eKO’/[diagKl o ['1(t; 0)ap — 2_22] dr. (45)
0

Note that the third term in Eq. (45) is of secular type<o’; by imposing to vanish, the following equation fd@(TL Ty) is
derived

9ay
diagKq)ay — —= =
lagK1)ay 0Ty
which has the readily solution

ay(Ty. Tp) = €M89KV g (1), (46)

whereag(Tz) is an unknown function of the time scadle to be determined. Solving the integrals in Eq. (45) gives
ay(r, Ty, Tp) = &X0'a (Ty, T2) + 0/ [ (K1 — diag(K 1)) o I1(1; 0) + H1 o IT(1; w) |e¥3IK D157 (47)

Here, we have defined the matrix
t
It w) = / Ii(7; w)dr = [Tp(t; @) — Ip(0; w)
0
andITg has(i, j)-entry as

e(xl.z/RefoZ/ReJriw)t

IH(t;, w)).. = —.
( 0 )1] X[?/Re—sz/Re—i—la)

The governing equations fca’(;(Tz) and a’l(Tl, To) are determined by imposing the vanishing of the secular terms of the
O(?) solution which is given by

t
. aa/

ag(t, Ty, Tp) = 0"y (1 Tp) + ' /{Kz o I1(7; 0KV 1 [K1 0 Fy(1;0) +Hy o My(t; w)]a) — a_Ti

+[K10T1(z;0)+ Hyo M1(z; 0)][(Kq — diagK 1) o I1(z; 0) + Hy o [T (; w)|el@IK D157

—[(Kq1 —diagK 1) o T(z; 0) + Hy o [T (; )] diag(K 1)e?@IK VT 57

i X d //
—[(M2Kg) o F1(r; 0)]efaIKD 18 _ gdiagk )Ty %} dr. (48)
Removing the secular terms gives the following equatioraior

REY

diagK)a, — — =S/(T1. T»), (49)
1 ,

a1

where
def

S(11, 7o) = —[ (K1 diagK 1) — diag(K 1)) o MTo(0; 0) + diagK 2 — MoK o) |eliddK Vg8 _ gdiagKu T -
2
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Note that in Eq. (48) the secular terms degieg upon the oscillatory part cancel each othedly, implying hat to the leading
order the solution does not depend upoa plulsatilty of the flow. Eq.49) admits uniform solutiong the resonance terms in
the sourceS'(Ty, T) are removed. This gives the following equation égr

d //
_d;;(z) + diagK» — M2K0)66 =0
readily solved as
ag(Tz) — ediaqKZ_MZKO)Tzag/, (50)

wherea(’)” is the vector of initial conditions. Faily from Egs. (50), (46) and (43) the(D solution has the final expression
ao(t, il TZ) — eKot ediagKl)Tl ediangfM zKo)Tzag/.

The leading order solutioag does not depend upon the pulty part and is agood approximation of the exact solution if
oz/WoZ — 0. In this limit, the Q) terms can be neglected.

Appendix D

Consider the function spacg = sparts1, ..., sn, . ..) Spanned by
sn(r) =r2(L=r?2To,_1)(r), n=1,..., (51)
whereT(,_1)(r) are the Chebyshev polynomials of even order defined as
To(—1)(r) =cog2(n — 1) COS_l(r)], n=01,....

It is readily proved that the sét,}°° ; satisfy the required boundary conditionsdahat it is orthogonal wh respect to the
weighted inner product

1
o1 —r2)4/1-r2 '

where the weight functio (r) has been derived by using the normality of the{§ef, (r)} on the interval0, 1]. We wish to
point out that the Chebyshev basis are not orthogonal in the energy sense (i.e. with respect to the inner productr13} 4nd as
they do not have characteristic decay behavior as the Orr—Sdaicthdo (see Figs. 1 and 12). From Eq. (19), if one neglects
the oscillatory flow component, the l¢agable eigenvalue of the matrid —1K predicts the stability of the steady Poiseuille
flow. Set the parametets= 1 andRe = 2000. ForN =10, 15, ..., 40 the least stable eigenvalue has been evaluated by using

1
(f,g)T=/W(r)fgrdr, W) =
0
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Fig. 12. The first 6 special Chebyshev basis.
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10° .

Chebyshev basis |

Longwave Orr-Sommerfeld basis

10 _—
10

Fig. 13. Relative errors curves for the least stable eigenvalue of steady Poiseuille pipe flow i@ndRe = 200Q

both the basig¢,}V_; and{s,}"_,. Taking the solution forv = 40 to be the ‘exact’ solutiom.4?’ = —0.06375— 0.93676i
in agreement with [27, p. 506]), the relative error

A (V) _ 540
2 (40)
of the first least stable eigenvalue is plotted in Fig. 13. If the Chebyshev basis are/usd®.6), the error drops off faster but

is always greater than the relative error if the Orr—Sommerfeld basis aredise@l Q). As an example, foN = 15 the error if
Orr—Sommerfeld basis are useais 108 whereas if the Chebyshev basis are employed, one hak0 3.

~N4 N=1015...,35

e=|
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