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Abstract

In this paper, following the theory of quasi-determinism of Boccotti [Boccotti P. Wave mechanics for ocean engineering. Oxford: Elsevier

Science.], the necessary and sufficient conditions, for the occurrence of two successive wave crests of large heights in a gaussian sea, are

given. It is proven that the first two-peaks part of the autocovariance function j(T) describes the structure of two successive-wave patterns.

As a corollary, it is shown that the tail probability of the joint distribution of two successive wave crests is given by a bivariate Weibull

distribution. The Weibull parameter is equal to j�
2 ZjðT�

2 Þ=jð0Þ. Here, T�
2 is the abscissa of the second absolute maximum of the

autocovariance function j(T). The analytical results are in agreement with Monte Carlo simulations. Finally, as an application, the maximum

expected wave crest pressure in an undisturbed deep water waves is evaluated by taking into account the stochastic dependence of successive

wave crests.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of quasi-determinism for the mechanics of

linear wave groups was derived by Boccotti in the eighties,

with two formulations. The first one [1–3] enables us to

predict what happens when a very high crest occurs at a

fixed time and location (see also [4–10]); the second one

[11–14] gives the mechanics of the wave group when a very

large crest-to-trough height occurs. The theory, which is

exact to the first order in a Stokes expansion (Gaussian sea),

is valid for any boundary condition (for example either for

waves in an undisturbed field or in reflection). The theory

was then verified in the nineties with some small-scale field

experiments [15,16], both for waves in an undisturbed field

and for waves interacting with structures. Boccotti [14] then

proposed a complete review of the theory. He showed that

both the highest wave height or the highest wave crest are

different occurrences of the space-time evolution of a well

defined wave group. Thus, the two formulations are
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congruent to each other. An alternative approach for

the derivation of the quasi-determinism theory was

proposed by Phillips et al. [17,18], who also obtained a

field verification off the Atlantic coast of the USA. The first

formulation of the theory (derived only for the time domain)

was also given by Tromans et al. [19], who renamed the

theory as ‘New Wave’.

In this paper the theory of sea states is summarized first,

then the second formulation theory of quasi-determinism is

revisited, in order to emphasize the key steps of the proof of

Boccotti. In his theory, setting t0 as an arbitrary time instant,

H the wave height and T* as the abscissa of the absolute

minimum of the autocovariance function j(T), Boccotti

showed that as aZH/s/N the condition

hðt0Þ Z
H

2
and hðt0 CT�Þ ZK

H

2
(1)

becomes necessary and sufficient for the occurrence of a

wave of height H (being s the standard deviation of the

surface displacement h). As a corollary, in the limit of a/
N, Boccotti derived that the probability of exceedance of

the wave height follows the Weibull distribution (see also

[20,21])

PrðHOaÞ Z exp K
a2

4ð1 Cj�Þ

� �
: (2)
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Here, j* is the narrow-bandedness parameter defined as

the absolute value of the quotient between the first absolute

minimum and the absolute maximum of j(T).

Following Boccotti ([11,14]), the necessary and suffi-

cient conditions for the occurrence of two successive wave

crests of very large given height are provided. It is also

proven that the first two-peaks part of the autocovariance

function j(T) describes the structure of two successive-

wave patterns. As a corollary, it is shown that the tail

probability of the joint distribution of two successive wave

crests is given by a bivariate Weibull distribution. The

analytical results are then validated by Monte Carlo

simulations. Finally, as an application, the maximum

expected wave crest pressure in an undisturbed deep water

waves is computed.
2. The theory of sea states

According to the theory of sea states, to the first order in a

Stokes expansion, a time series of surface displacements

h(t), recorded at a fixed point at sea, is a realization of the

stationary ergodic stochastic Gaussian process

hðtÞ Z
XN
iZ1

aicosðuit C3iÞ: (3)

Here, it is assumed that frequencies ui are different from

each other, the number N is infinitely large and the phase

angles 3i, uniformly distributed in [0, 2p], are stochastically

independent of each other. Furthermore, all the amplitudes

ai satisfy the frequency spectrum S(u) defined as

SðuÞDu Z
X

i

a2
i

2
ui 2 uK

Du

2
;u C

Du

2

� �
: (4)

The jth order moment of the spectrum is mj Z
ÐN
0

ujSðuÞdu:

In particular m0Zs2, where s is the standard deviation of h(t).

The autocovariance function j(T) can be evaluated as

jðTÞ Z

ðN
0

SðuÞcosðuTÞdu:

In the context of ocean waves the JONSWAP spectrum

[22] is adopted in the following form

SðuÞ Z Ag2uK5
p

u

up

� �K5

exp K
5

4

u

up

� �K4� �

$exp ln g exp K
ðuKupÞ

2

2c2
2u2

p

" #( )
:

(5)

Here, up is the peak frequency, A is the Phillips

parameter, g is the enhancement coefficient. For typical

wind waves one can assume gZ3.3 and c2Z0.08. For gZ1

and AZ0.0081 the Pierson–Moskowitz spectrum is recov-

ered. Note that other wave processes, to the first order in a
Stokes expansion, can be expressed as in Eq. (3) with

appropriate choice of the spectral coefficients {ai}iZ1,N.

Note that the moments of the JONSWAP spectrum exist as

far as m3 implying only the existence of the first-order

derivative of the stochastic process h(t). By cutting off the

high-frequency tail of the JONSWAP spectrum, one can

define a new spectrum over a compact support and all the

moments then exist implying the existence of all the higher

derivatives of j(T) and consequently the (m.s. stochastic)

differentiability of h(t) to any order. As pointed out by

Boccotti [see [14], p. 294] ‘the high frequency term does not

alter the crest elevation, nor the trough depth, nor the time

interval between the crest and trough, nor the wave period.

It simply ruffles the wave surface with a lot of very small

ripples’. In the applications, the JONSWAP spectrum S(u)

can be considered in the frequency range u2[0, 6up] when

the interest is in the analysis of the wave crest, wave trough

or wave height.
3. The theory of quasi-determinism

Let us consider the surface displacement h(t) at any fixed

point (x0, y0) in a Gaussian wave field. Setting t0 as an

arbitrary time instant, H as the wave height and T* as the

abscissa of the absolute minimum of j(T), Boccotti [11,13]

showed that the condition (1) is necessary and sufficient for

the occurrence of a wave of height H as aZH/s/N. The

condition (1) is sufficient because as a/N the conditional

p.d.f.
p hðt0 CTÞ Z u
�

hðt0Þ Z
H

2
;hðt0 CT�Þ ZK

H

2

� �
(6)
tends to a delta function d½uK �hðt0CTÞ� centered at
�hðt0 CTÞ Z
H

2

jðTÞKjðT KT�Þ

jð0ÞKjðT�Þ
: (7)
This implies that as a/N, given the condition (1), with

probability approaching one, the surface displacement

h(t0CT) tends to the deterministic form �hðt0 CTÞ. This is

a wave profile with wave height H, having a crest

of amplitude H/2 at TZ0 and a trough of amplitude H/2

at TZT*.

In order to show that condition (1) is also a necessary

condition, Boccotti derived the analytical expression for the

expected number per unit time EX(a, t, x) of local maxima

of the surface displacement h(t) with amplitude xa which

are followed by a local minimum with amplitude (xK1)a

after a time lag t. He showed that as a/N in the

domain (t, x) there exists an O(aK1) infinitesimal
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neighborhood (dt, dx) of (T*, 1/2) such that

EXs:w:ða;t;xÞ

Z
EX a;T�;

1

2

0
@

1
Aexp K

1

8
ðK�

t dt2CK�
x dx2Þa2

2
4

3
5

0 elsewhere

:

8>><
>>:

Here, K�
t and K�

x are constants and EXs.w.(a, t, x) is the

expected number per unit time of local maxima of the surface

displacement h(t) with amplitude xa which are followed by a

local minimum with amplitude (xK1)a after a time lag t,

where the local maximum and the local minimum must be the

crest and the trough of the same wave, respectively, (the

subscript s.w. stands for same wave). Thus, a local maximum

of dimensionless amplitude a/2Cdx followed by a local

minimum of dimensionless amplitude a/2Kdx after a time

lag T*Cdt has almost the same maximal expectation as a

local maximum with amplitude a/2 followed by a local

minimum of amplitude a/2 lagged in time by T* in the limit

of a/N. But a local maximum and a local minimum of

amplitudes a/2 lagged in time by T* are also the crest and

trough of a wave because condition (1) is sufficient. Hence,

condition (1) is also necessary in the limit of a/N.

As a corollary, Boccotti showed that the wave height

distribution p(a) (see also [20,21]) admits the following

asymptotic expression

pðaÞ Z

ÐN
0

Ð1
0

EXs:w:ða; t; xÞdtdx

EXC

Z
a

2ð1 Cj�Þ
exp K

a2

4ð1 Cj�Þ

� �

as a/N:

Here, j�ZKjðT�Þ=jð0Þ is the narrow-bandedness

parameter and

EXC Z
1

2p

ffiffiffiffiffiffi
m2

m0

r
(9)

is the expected number per unit time of zero up-crossing of

the surface displacement. For narrow-band spectra j*/1,

whereas broad-band spectra are characterized by j*/1.
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Fig. 1. Two successive wave crests lagged in time by T�
2 .
4.1. Sufficient conditions

In the following, the theory of quasi-determinism of

Boccotti is extended to study the occurrence of two very

large successive wave crests. Consider the probability
density function of the surface displacement h(t), at any

fixed point (x0, y0) in a Gaussian sea, given the conditions

hðt0Þ Z h1 and hðt0 CT�
2 Þ Z h2: (10)

Here, t0 is an arbitrary time instant, h1 and h2 are crest

amplitudes and T�
2 is the abscissa of the second absolute

maximum of the autocovariance function j(T) (see Fig. 1).

The p.d.f. of h(t) at time t0CT, given conditions (10) is

Gaussian, i.e.

p½hðt0 CTÞ Z u=hðt0Þ Z h1; hðt0 CT�
2 Þ Z h2�

Z
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
c

p exp K
½uKhcðt0 CTÞ�2

2s2
c

� �

where the conditional mean hc(t0CT) is given by

hcðt0 CTÞ Z C1jðTÞCC2jðT KT�
2 Þ (11)

and the coefficients C1 and C2 are given by

C1 Z
h1jð0ÞKh2jðT�

2 Þ

j2ð0ÞKj2ðT�
2 Þ

; C2 Z
h2jð0ÞKh1jðT�

2 Þ

j2ð0ÞKj2ðT�
2 Þ

:

(12)

The conditional variance s2
c admits the following

expression

s2
c

s2
Z 1K

j2ðTÞCj2ðT KT�
2 ÞK2jðTÞjðT KT�

2 Þ
jðT�

2 Þ

jð0Þ

j2ð0ÞKj2ðT�
2 Þ

:

(13)

It follows that sc!s since jðT�
2 Þ=jð0Þ is smaller than

unity by definition. This implies that, in the limit of h1/s/
N and h2/s/N the ratio sc/hc(t0CT) approaches zero,

since hc(t0CT)/N and sc is bounded by the unconditional

standard deviation s. Thus, all the realizations of the

Gaussian sea satisfying conditions (10), with probability

approaching one, tend to the deterministic profile hc(t0CT)
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for very large crest heights, i.e.

p½hðt0 CTÞ Z u=hðt0Þ Z h1;hðt0 CT�
2 Þ Z h2�

/d½uKhcðt0 CTÞ� as
h1

s
and

h2

s
/N:

The conditional mean hc(t0CT), [see Eq. (11)] represents a

wave structure of two successive wave crests lagged in time by

T�
2 , if certain constraints are given. Note that hc(t0CT) is a linear

combination of the autocovariance j(T) and the shifted

autocovariance yðT KT�
2 Þ. Since, TZ0 and T ZT�

2 are the

abscissa of the first absolute maximum and second absolute

maximumofj(T)respectively,thisimpliesthathc(t0CT)attains

two local maxima at TZ0 and T ZT�
2 , if both the second order

derivatives at these abscissas are less than zero, i.e.

€hcð0Þ!0 and €hcðT
�
2 Þ!0: (14)

Some algebra yields

€hcð0Þ Z aðKb0 Csb1Þ €hcðT
�
2 Þ Z aðKb1 Csb0Þ (15)

where b0Zh1/s and b0Zh2/s and (the dot denotes time

derivative)

a Z
1 CjðT�

2 Þ €jðT
�
2 Þ

1Kj2ðT�
2 Þ

s Z
jðT�

2 ÞC €jðT�
2 Þ

1 CjðT�
2 Þ

€jðT�
2 Þ

:

Since,a isalwaysgreaterorequal tozero, thecondition(14) is

fulfilled if

b0; b1 2R2
C if s%0

b0; b1 2UðsÞ if sO0
:

(
(16)

Here, U(s) is the open sectorial region of R2
C with aperture

angle qZp=2K2 tanK1ðsÞ, that is

UðsÞ Z ðb0; b1Þ2R2
C : b0R0; b1R0; s!

b1

b0

!
1

s

� �
:

Typical JONSWAP spectrum satisfies the condition sO0

withs2[0.14,0.16].As thespectrumgetsnarrowthesectorU(s)

tends to cover allR2
C, i.e. q/p/2, because s approaches zero in

the narrow-band limit. Moreover, since it is assumed that the

autocovariance function j(T) attains only one minimum at

TZT*intheopeninterval(0,T�
2 )(seeBoccotti, [13,14]), thetwo

local maxima of the wave profile hc(t0CT) are also

two consecutive wave crests (see Fig. 1). Hence, as b0/N
and b1/N, conditions (10) are sufficient for the occurrence of

two successive wave crests of very large height within the limits

of constraint (16).

4.2. The Conditions (10) are necessary for the occurrence

of two large successive wave crests

In the following, the notations jT, hT are adopted to

indicate respectively the autocovariance j(T) and the

surface displacement h(T). Without losing generality, the

time scale m0=
ffiffiffiffiffiffi
m2

p
and the length scale sZ

ffiffiffiffiffiffi
m0

p
are used to

non-dimensionalize Eq. (3) such that the zeroth and the

second order moment of the spectrum are equal to one,
i.e. m0Z1 and m2Z1. It follows that j0Z1 and €j0 ZK1.

Consider the expected number per unit time

EXcðb0;b1; tÞdb0db1dt (17)

of local maxima of the surface displacement h(t) (at a

fixed location in space) whose elevation is between b0 and

b0Cdb0, and which are followed by a local maximum with

an elevation between b1 and b1Cdb1 after a time lag

between t and tCdt. Following the general approach

introduced by Rice (see [14], pp. 159–162), EXc(b0, b1, t)

can be expressed as

EXcðb0;b1; tÞ Z

ð0
KN

ð0
KN

jz1z2jp½h0 Z b0; €h0 Z 0; €h0

Z z1;ht Z b1; _ht Z 0; €ht Z z2�dz1dz2: (18)

Here, p½h0; _h0; €h0;ht; _ht; €ht� is a Gaussian joint prob-

ability density function. Eq. (18) is rewritten in the form

EXcðb0;b1; tÞ Z p½h0 Z b0; _h0 Z 0; _ht Z 0;ht

Z b1�

ð0
KN

ð0
KN

jz1z2j$p½ €h0 Z z1; €ht Z z2=h0 Z b0; _h0

Z 0; _ht Z 0; ht Z b1�dz1dz2:

Since, the conditional mean hc attains two local maxima

at TZ0 and T ZT�
2 , in the limit of b0/N and b1/N the

following holds

p½ €h0 Z z1; €ht Z z2=h0 Z b0; _h0 Z 0; _ht Z 0;ht Z b1�

/d½z1K €hcð0Þ; z1K €hcðT
�
2 Þ�

and this yields the simplification of Eq. (18) as follows

EXcðb0;b1; tÞ Z p½h0 Z b0; _h0 Z 0; _ht Z 0;ht

Z b1� €hcð0Þ €hcðT
�
2 Þ: (19)

Here, if the joint probability p½h0Zb0; _h0Z0; _htZ
0;htZb1� is Taylor expanded with respect to the variable

t around tZT�
2 (see Appendix), this gives

EXcðb0;b1; tÞx
1

ð2pÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kj2

T�
2

q

$exp K
b2

0 Cb2
1 K2jT�

2
b0b1

2ð1Kj2
T�

2
Þ

K
K�

2
dt2 Coðdt2Þ

" #
: ð20Þ

Note that the coefficient K* is greater than zero and tends

to infinity as b0/N and b1/N (see Appendix). Hence, in

the same limit, from Eq. (20) there exists an infinitesimal

neighborhood dG of order OðK�Þ such that cdt2dG
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EXcðb0;b1; tÞ

Z
EXcðb0;b1; T

�
2 Þexp K

1

2
K�dt2

0
@

1
A

0 elsewhere

8>><
>>:

as b0/N and b1/N:

(21)

Numerical investigations show that

EXcðb0;b1;T
�
2 Þ

EXcðb0;b1; tÞ
O1 ctsT�

2 :

Thus, two successive local maxima of dimensionless

amplitude b0 and b1 respectively, attain the maximal

expectation EXc(b0, b1, t) when the time lag between

their occurrence is equal to tZT�
2 . Moreover, from Eq. (21)

a local maxima of a very large amplitude b0 followed by a

local maxima of a very large amplitude b1 after a time lag

T�
2 Cdt or have almost the same maximal expectation as

two local maxima with amplitudes equal to b0 and b1

respectively, lagged in time by T�
2 . However, two local

maxima of large amplitude lagged in time by T�
2 are also

two successive crests because the conditions (10) are

sufficient. Hence, the conditions (10) are also necessary in

the limit of b0/N and b1/N.
5. The tail probabilities of two successive wave
crest heights

Let us define

EXs:c:ðb0;b1; tÞdb0db1dt (22)

as the expected number per unit time of local maxima of the

surface displacement h(t) (at a fixed location in space)

whose elevation falls between b0 and b0Cdb0 and are

followed by a local maximum of elevation between b1 and

b1Cdb1 after a time lag between t and tCdt, where both

the local maximum at tZ0 and the local maximum at tZt

must be two successive wave crests (the subscript s.c. stands

for successive crests). From the definition of EXc and EXs.c.

it follows that

EXs:c:ðb0;b1; tÞ%EXcðb0;b1; tÞ
EXs:c:ðb0; b1; tÞ

EXcðb0;b1; tÞ
/0

as t/N:

As b0 and b1/N, from Eq. (21) it has been proven that

two successive wave crests lagged in time by T�
2 Cdt with

dt2dG are, with probability approaching one, two local
maxima lagged in time by T�
2 Cdt. This implies

EXs:c:ðb0; b1; tÞ

Z
EXcðb0;b1; tÞ t Z T�

2 Cdt dt2d

0 elsewhere
:

(
(23)

The exact expression for the joint probability density

function p(b0, b1) of two successive wave crests is given by

pðb0;b1Þ Z

ÐN
0

EXs:c:ðb0;b1; tÞdt

EXC

(24)

where EXC is defined as in Eq. (9). If b0 and b1/N, since

Eq. (23) holds, Eq. (24) simplifies as the following

pðb0;b1Þx
1

2p

€hcð0Þ €hcðT
�
2 Þ

1Kj2
T�

2

exp K
b2

0 Cb2
1 K2jT�

2
b0b1

2ð1Kj2
T�

2
Þ

" #
ð

dt2dG

exp K
1

2
K�dt2

� �
dðdtÞ: ð25Þ

The integral that appears in Eq. (25) can bounded byÐN
KN

expðKð1=2ÞK�dt2ÞdðdtÞZ
ffiffiffiffiffiffi
2p

p
=
ffiffiffiffiffiffi
K�

p
obtaining the p.d.f.

paðb0;b1Þ Z
1 Cj�

2
€j�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2p €j�

2 ð1Kj�2
2 Þ3

q

exp K
b2

0 Cb2
1 K2j�

2 b0b1

2ð1Kj�2
2 Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKb0 Csb1ÞðKb1 Csb0Þ
p

(26)

where j�
2 hjT�

2
and €j�

2 h €jT�
2
. From Eq. (26) the following

upper bound for pa(b0, b1) is readily derived

paðb0;b1Þ%
1ffiffiffiffiffiffi
2p

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�
2 ð1Kj�2

2 Þ
p

exp K
b2

0 Cb2
1K2j�

2 b0b1

2ð1Kj�2
2 Þ

� � ffiffiffiffiffiffiffiffiffiffi
b0b1

p
ð27Þ

since (b0Ksb1) (b1Ksb0)%b0b1 and for typical spectra one

can prove that ð1Cj�
2
€j�

2 =
ffiffiffiffiffiffiffiffiffi
K€j�

2

p
ð1Kj�2

2 ÞÞ%1. Because

the following asymptotic expansion for the modified Bessel

function I0(y) holds

I0ðyÞ Z
1ffiffiffiffiffiffi
2p

p
expðyÞffiffiffi

y
p CoðyK1Þ as y/N; (28)

setting yZkb0b1=ð1Kk2Þ in Eq. (28), the upper bound (27)

is the asymptotic expansion of the following bivariate

Weibull distribution

pWðb0; b1Þ Z
b0b1

1Kk2
exp K

b2
0 Cb2

1

2ð1Kk2Þ

� �
I0

kb0b1

1Kk2

� �
: (29)

Here, the Weibull parameter is kZj�
2 . The bivariate

Weibull distribution has been used by many authors to

model the distribution of successive wave heights in

narrow-band Gaussian seas [23–26] or the distribution of
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successive wave periods [27] and the parameter k is

estimated as

km Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐN
0

SðuÞcosðuTmÞdu

� �2

C
ÐN
0

SðuÞsinðuTmÞdu

� �2

m0

vuuut
(30)

with Tm Z2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m2

p
the mean zero up-crossing period. By

means of the theory of quasi-determinism, a bivariate

Weibull law has been derived as a model for the statistics

of successive wave crests. The Weibull parameter k

[see Eq. (29)] is equal to the non-dimensional parameter

j�
2 ZjðT�

2 Þ=jð0Þ with T�
2 the abscissa of the second

absolute maximum of the autocovariance function j(T).

0 1 2 3 4 5

β1

Fig. 2. The probabilities of exceedance: comparison among the asymptotic

p.d.f. pa(b0, b1), the Weilbull pW(b0, b1) and the Monte Carlo simulations

for b0Z1.84.

0.07
6. Validation

The probability laws pa(b0, b1) and pW(b0, b1), i.e.

Eqs. (26) and (29), are now validated by performing Monte

Carlo simulations with the following spectral form

SðupÞ Z

1

umaxKumin

umin !u!umax

0 elsewhere

:

8><
>: (31)

Assuming umaxZ1.5up and uminZ0.5up, by means of

Eq. (3), realizations of a Gaussian sea state with the given

spectrum (31) have been generated, with roughly 90,000

waves. In Figs. 2–4, the theoretical probabilities of

exceedance Pr[b0Ox0, b1Ox1] of the asymptotic p.d.f. (26)

and the Weibull p.d.f. (29) are compared to the probabilities

of exceedance derived from the Monte Carlo simulations. As

one can see from the plots, the asymptotic pa(b0, b1) and the

Weibull pW(b0, b1) are respectively a lower bound and an

upper bound of the exact p.d.f. p(b0, b1). The distribution

pa(b0, b1) converges to the exact distribution p(b0, b1) for

b0O2 and b1O2, whereas the convergence of pW(b0, b1) is

attained for b0O2.5 and b1O2.5.
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Fig. 3. The same probabilities of exceedance as in Fig. 2, for b0Z2.32.
7. Application: the maximum expected wave crest

pressure in undisturbed deep water

Consider Nc consecutive waves of a sea state with a

typical JONSWAP energy spectrum as in Eq. (5).

The probability that the largest crest height of this set of

Nc waves is smaller than a threshold h is equal to the

probability that all Nc wave crests are smaller than h, i.e.

PrðCmax %hÞ Z PrðC1%h;C2%h;.;CNc
%hÞ: (32)

Here, Cmax is the largest wave crest of the set

fC1;C2;.;CNc
g. Assuming that the wave crest heights are

stochastically independent of one another yields
PrðCmax %hÞ Z ½PrðC1 %hÞ�Nc : (33)

This expression underestimates the probability that all

the wave crest heights are smaller than h, because it does not

take into account the clustering effect, i.e. if a wave crest is

smaller than h, neighboring crest heights will be more likely

to be less as well due to their dependence. However, the

clustering effect is not expected to involve many

neighboring crests at the high level of h. In fact, for large

h, the wave crest is the center of a wave group, where we can

expect that one or two waves before, and one or two

waves after, will also be higher than the mean wave crest

(see [14], pp. 177–180). In the following, the probability

that the next wave crest height CjC1 is less than h, is

assumed to depend only upon whether the last wave crest

height Cj was less, and not upon still earlier wave

crest heights CjK1,CjK2,.. This is a form of a Markov
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Fig. 4. The same probabilities of exceedance as in Fig. 1, for b0Z2.79.
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chain (one-step memory in time), which gives for Eq. (32)

the following simplification

PrðCmax %hÞ Z PrðC1%hÞ$PrðC2%h=C1 %hÞ

.PrðCNc
%h=CNcK1 %hÞ

Z PrðC1%hÞ ½PrðCj%h=CjK1%hÞ�NcK1 ð34Þ

where Pr(Cj%h/CjK1%h) is the probability that a wave

crest height is smaller than h given the condition that

the precedent wave crest is less as well. The probability (34)

can be easily computed since, from Eq. (29)

PrðCj%h=CjK1%hÞ Z

Ðh=s
0

Ðh=s
0

pWðb0;b1Þdb0db1

1Kexp K1
2

h
s

" #2h i
and

PrðCj%hÞ Z 1Kexp K
1

2

h

s

� �2� �
j Z 1;.;Nc:

The maximum expected wave crest �Cmax can then be

evaluated as (see [14], pp. 177–180)

�Cmax Z

ðN
0

½1KPrðCmax%hÞ�dh:

Observe that �Cmax depends upon the choice of the

parameter k of the Weibull distribution (29). As an

application, consider the first-order random wave pressure

in an undisturbed field on deep water at a fixed point in the

sea, given by

hðz; tÞ Z
Dpðz; tÞ

rg
Z
XN
iZ1

aiexp
u2

i

g
z

� �
cosðuit C3iÞ: (35)

with z2[0, KN). For fixed z, by setting

~ai Z aiexp
u2

i

g
z

� �
;

h(z, t) is a stationary ergodic stochastic Gaussian process

with spectrum

~Sðu; zÞ Z SðuÞexp
u2

g
z

� �
:

Here, according to Eq. (4), ~Sðu; zÞ is defined as

~Sðu; zÞdu Z
X

ui2½u;uCdu�

~a2
i

2
:

The autocovariance function j(z, T)Zhh(z, t)h(z, tCT)i

of h(z, t) can be evaluated by the following integral

jðz;TÞ Z

ðN
0

~Sðu; zÞcosðuTÞdu

and the standard deviation of the wave pressure at level z is

readily obtained as sZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jðz; 0Þ

p
. In Fig. 5 the parameters

j*, j�
2 and km [see Eq. (30)] are plotted as a function of the

dimensionless depth u2
pjzj=g. In Fig. 6 the plots of
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the maximum expected wave crest pressure �Cmax, evaluated

using kZj�
2 , kZkm and kZ0 respectively (NcZ200

waves), are displayed. Note that the case of kZ0 imposes

stochastic independence among the wave crests, since the

Weibull law (29) reduces down to the product of two

Rayleigh laws. From Fig. 5 one can see that the wave

pressure spectrum tends to become narrow as the depth level

increases, since j* tends to 1. This implies that the

assumption of stochastic independence among the pressure

crests breaks down. As a consequence, the maximum

expected wave crest pressure �Cmax computed with kZ0

overestimates the maximum expected wave crest pressure
�Cmax evaluated using both kZj�

2 and kZkm. (see Fig. 6).

Observe that the maximum expected wave crest pressure
�Cmax computed with kZj�

2 is slightly more conservative

than the maximum expected wave crest pressure �Cmax

computed with kZkm, since km Oj�
2 (see Fig. 5).
8. Conclusions

The necessary and sufficient conditions for the occur-

rence of two very large successive wave crests are given. As

a corollary, it is proven that the tail probability of the joint

distribution of two successive wave crests is given by a

bivariate Weibull law. Here, the Weibull parameter is equal

to j�
2 ZjðT�

2 Þ=jð0Þ with T�
2 the abscissa of the second

absolute maximum of the autocovariance function j(T). It is

also proven that the first two-peaks part of the autocovar-

iance function j(T) describes the structure of two

successive-wave patterns. The theoretical results agree

well with the Monte Carlo simulations. Finally, as an

application, the maximum expected wave crest pressure in

an undisturbed deep water waves is evaluated considering

the stochastic dependence of successive wave crests.
Appendix

The joint probability in Eq. (19) is multivariate Gaussian

and can be expressed as

p½h0 Z b0; _h0 Z 0; _ht Z 0; ht Z b1�

Z
1

ð2pÞ2
ffiffiffiffiffiffi
jDj
p exp K

1

2
f ðb0;b1; tÞ

� �
:

Here, f(b0,b1,t)ZuDK1ut and D is the covariance matrix

of the row vector of variables uZ ½h0; _h0; _ht;ht� defined as

D Z

1 0 _jt jt

0 1 K€jt K_jt

_jt K€jt 1 0

jt K_jt 0 1

2
666664

3
777775:

By Taylor-expanding the function f with respect to the

time lag t, starting from tZT�
2 , yields
f ðb0;b1; tÞ Z
b2

0 Cb2
1K2jT�

2
b0b1

1Kj2
T�

2

CK�dt2 Coðdt2Þ

where

K� ZK
€jT�

2

1K €j2
T�

2

€hcð0Þ €hcðT
�
2 Þ:

The parameter K*R0, since the coefficient ð €jT�
2
=1K €j2

T�
2
Þ

is always negative ( €jT�
2

!0 because j attains a maximum at

tZT�
2 and j €jT�

2
j%1 by definition) and €hcð0Þ €hcðT

�
2 ÞO0 if

the constraint (16) holds. Note that as b0/N and b1/N
the coefficient K* goes to infinity.
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