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Weakly nonlinear statistics of high random waves
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It is well known that in a Gaussian sea state for an infinitely narrow spectrum the crest height and
the trough depth follow the same Rayleigh distribution, because of linearity of the first order Stokes
expansion solution. For spectra of finite bandwidth, Boccotti obtained, as a corollary of his first
formulation of the theory of quasideterminis(which is exact to the first order in a Stokes
expansioh, that the crest height and the trough depth still follow asymptotically the Rayleigh law
for high waves in Gaussian sea states. In this paper we extend the theory of quasideterminism of
Boccotti to the second-order, deriving new wave crest and wave trough distributions that take into
account nonlinear effects and are valid for finite bandwidth of the spectrum in deep water. Nonlinear
Monte Carlo simulations validate our theoretical predictions and comparisons with experimental
data and the recent model of Forristall are finally presente@0@ American Institute of Physics
[DOI: 10.1063/1.1831311

I. INTRODUCTION waves: they give results very close to each other and in good
agreement with field datéPrevosto and Forristafl).

The first order Stokes solution of the free surface dis-  Several authors have also investigated third order effects
placement is a random Gaussian process of timeas the modulation instabilitysee Jansséhand references
Longuet-Higgins showed that for an infinitely narrow spec- herein). It is believed that they can cause the occurrence of
trum the wave height follows the Rayleigh distribution. Be- very large amplitude wavegreak waves The mechanism
cause of the symmetry of a Gaussian sea state the crest amtht could generate a freak wave is related to the four-wave
trough distributions follow the same Rayleigh law for narrow interaction(see Jansseil,Komenet a|_28)_ Nonlinear energy
spectra. For the case of spectra of finite bandwidthtransfer among nonresonant and resonant quartets is gov-
Boccottf~® showed as corollary of his first formulation of the erned by the deterministic Zakharov integral differential
theory of quasideterminism that the crest height and th@quatimz_9 Under the assumption of narrow-band spectrum,
trough depth still follow asymptotically the same Rayleighthe Zakharov equation reduces down to the nonlinear
law for high wave amplitudésee also Lindgreetf;"' Maes  Schrodinger equatioiNLS). Trulsenet al®® proposed an
and Breitung,” Breitung;” Sun}* Leadbetter and Rootzéfi, enhanced NLS equatiofDNLS) valid for broader spectral
and Kac and Slepidf). bandwidth and larger steepness. Using this equation, Trulsen

If the nonlinear effects are not negligible, the probability and Dysthél showed that a freak wave can be generated
density functionp(») of the surface displacement tends to through nonlinear self-modulation of a slowly modulated
deviate from being Gaussian. In particular, second order norwave train. Their numerical solution of the DNLS equation
linearities make high crests to be more probable than deeggrees very well with experimental record from the Draupner
troughs, i.e., the skewness of(7) is not zero time seriegsee also Wiset al®? for details about this time
(Longuet-Higging”). Tayfurt®*® and Tung and Huar§in-  series. Onoratoet al,® solving numerically both the NLS
vestigated the crest-trough symmetry, deriving the probabiland DNLS equations, showed that the cumulative probability
ity distributions of both the second order crest and troughdensity function of the wave heights deviates from the Ray-
under the hypothesis of narrow-band spectrum. Arena ankigh distribution: high wave heights are more probable than
Fedelé" obtained the crest and the trough distributions of avhen judged by the Rayleigh law. For the case of a
general nonlinear narrow-band stochastic family, which in-JONSWAP spectrum, they found that the deviation from the
cludes many processes in the mechanics of the sea wavRsayleigh law increases, as both the enhancement coefficient
(either in an undisturbed field or in front of a vertical wall y and the Phillips parameter increagee also Onoratet
Other second order models have been proposed by All.*%. Experimental work on the influence of the modulation
Humoudet al;** Wu and Song’ derived the distribution of instability on the cumulative probability function of wave
local maxima by solving for the joint distribution of the sea crests has been presented by Stansfrerg.
surface and its first derivative by the moment method. More-  In this paper, unidirectional waves in deep water are con-
over two models(Prevostoet al.** Forristalf®) were pro-  sidered. Based on the work of Bocchili new analytical
posed for the crest height distribution of three dimensionalvave crest and trough distributions are derived. They take

into account second-order effects and are valid for finite
3Telephone:+1-802-656-8140. Electronic mail: ffedele@emba.uvm.edu  bandwidth of the spectrum in deep watésee also
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Longuet-Higgin§6 for an alternative analysis ber of wave crests exceeding a fixed threshibltends to
Boccotti showed that in a Gaussian sea state, if it iscoincide with the number of local wave maxima exceeding

known that a very high local maximurfminimum)—very it, provided the fixed threshold is very high. As a conse-

high with respect to the mean crest heigiibugh depti—  quence, the number of wave crests exceeding a very high

occurs in some time and location, this implies that a well-thresholdb tends to coincide with the number df up-

defined quasideterministic wave group generates the highestossinggb,), that is

local maximum (minimum) which tends to be the crest ]

(trough) of its wave. As corollary he derived that both the Ne,(b; AD

probabilities of exceeding the crest and trough amplitude fol- ~ Nai(b;At)

low asymptotically the Rayleigh distribution. Here,N.(b;At) andN,(b; At) denote, respectively, the num-

The main result of this paper is that second order A3 e of wave crests exceeding the thresholhd the number

Iythal models for the prediction of extreme_ event; can b(?pf b, in the very large time intervakt. Since(see Boccotﬁ)
derived by means of the theory of quasideterminism o

BoccottiZ™ This theory can also be extended to consider 2
third order nonlinearities as shown recently by Fedéleyt N.(b;At) o exp(— ﬁ)m
this will be discussed in a future paper.
The authors, starting from the general second ordethe probability of exceeding a wave crest height admits the
Stokes solution of the surface displacement for long-crestetbllowing asymptotic expression:
waves, showed that the amplitude of the nonlinear crest N, (b: At) b2
(trough) depends upon the linear cregtough amplitude. P(hy > b):+—':exp(— —> asblo — «, (3)
Thus the probability distributions of the nonlinear crest and N.(0;At) 20

trough are_obtal!qeq. , , , which is the well-known Rayleigh distribution.
Numerical distributions obtained by Monte Carlo simu- The quasideterministic wave groap: In physical space
lations of nonlinear second order Gaussian sea states are;}?(xl-r) represents the evolution of a wave group which

agreement with our analytical results. Comparisons with ex
perimental data and with the recent model of Forriétafl
are finally discussed.

—1 asblg— «.

reaches its absolute maximuhng at time t=t, at the fixed
point x=X,. SetS(w) as the unidirectional JONSWAP spec-
trum,

Il. THE THEORY OF QUASIDETERMINISM 5 -4
Q S(w) =Agtw™® exp[— —<2> ]

The theory of quasideterminism of Boccdttiis now 4\wp
presented for the case of unidirectional random waves in - w.)>?
deep waterthe direction is along thg axis). Similar analy- Xexp{ln YeXP[‘ (Z—zwg)_} } (4)
sis holds for the general case of short-crested random waves. X @
If in a Gaussian sea state it is known that a very highwhere w,, is the peak frequency is the Phillips parameter
local maximum occurs in some location and time, this im-and y is the enhancement coefficient aneg0.08. As the
plies with high probability that a well-defined wave group parametery increases, the spectrum becomes higher and nar-
generates the high local maximum. In detail, let us assumeower around the spectral pegkee Onoratcet aI.34). For
that a local wave maximum of given elevatibpoccurs ata y=1 andA=0.0081, Eq.4) reduces down to the Pierson—
time t=t, at a fixed pointx=x,. If hy/c—=, i.e., the crestis Moskowitz spectrum. Th¢h order moment of the spectrum
very high with respect to the mean crest height, then withs
probability approaching 1, the surface displacementx at

=Xg+X is asymptotically equal to the deterministic form m :j Sw)® do.
_ W(X,T) 0
77L(X1T) = hO! (l) . . . .
¥(0,0 In particularmy is the variances? of the surface displace-

being o the standard deviation of the free surface displace-ment' According to the theory of sea statsse Boccott), to

ment 7(x,t). The space—time covariange(X, T) is given by the first ord(_ar in a S_tok_es expansion, the surfa_ce displace-
ment 7(X,t) is a realization of the following stationary er-

V(X T) = (g, ) p(x+ X, t+T)), (2)  godic Gaussian process:
where N
1(7 n(x,t) = 2 a, CogknX — wpt + &p). 5
(f(t))=lim ;f f(t)dt n=1
—=TJo

Here, it is assumed that the frequenaigsare different from

is the time average. An exceptionally high local maximum,each other, the numbé\ is infinitely large, and the phase
with a very high degree of probability, is also a wave crest ofanglese,,, uniformly distributed in 0, 2], are stochastically

its wave, because the space-time covariance functiomdependent of each other. In deep water the wave numbers
W(X,T) attains its absolute maximum éX=0,T=0) as it  are given byk,=w?/g. Furthermore, all the amplitudes are

will be shown below. A direct consequence is that the num-defined such that
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2% =Y)Ao With 0-Aw2< v, < 0 +Aw/2. 1? n | | |
| (6) 0.8 \Nonlinearwave i
This gives 0.6 \Linearwave
N 1 N Aw—s0 0.4
0?=¥(0,0 :25. 23@,)@ = f S(w)dw 0.2

and the space—time covariandgX,T) in Eq. (2) has the
following expressior(see Appendix B 0.2

Il order
component

o 0.4} g
W(X,T) = f Sw)cogkX — wT)dw. (7) oel |
° - T
Let us observe tha¥(X,T) reaches its absolute maximum 08, 0.5 1 15 2 25 3
o? at(X=0,T=0). The surface displacemenj is then given , , _ o
b FIG. 1. The time evolution of the wave grougX,T) and of its linear and
y nonlinear component &=0.

n(XT) ==+ :—ng S(w)cogkX - wT)dw, (8)
0

where the plus and minus signs are for an initial condition at ~ 7x 1) = @f S(w)codg X - wT)dw
t=ty as a crest or a trough, respectively. Because of the sym- o”

metry of a Gaussian process, if a large trough occurs at a
timet=ty at a fixed pointx=Xg, with probability approaching

1 the surface displacement has a expression aglEwith a
minus sign. In this casé, is the amplitude of the wave
trough.

X{(? + w3)codg ™ w? + w3 X — (w1 + wy)T]
- |0? - w3codg Hw] - W)X

= (w1 = wy) T]}dw; dws. (11
I1l. STATISTICS OF WEAKLY NONLINEAR WAVES . . .
Here, according to Boccotti’s theory, the amplituggof the

For the case of unidirectional waves in deep water analinear wave crest is assumed to be very large if compared to
lytical solutions for the probabilities of exceeding the secondhe mean wave crest amplitude, i.b8g/oc— . Letting k,
order nonlinear wave crest and trough are derived. A similaF 2/g, the wave number at the peak frequency, the ratio
analysis also applies to the case of multidirectional wavesbetween the first term and the second term in @&d) is of

but this will not be discussed here. order O(kyho). Therefore, the expression efX,T) is valid

as long as the nonlinear effects are weak, which means that
A. Nonlinear free surface displacement in deep water the parametek,h, must be small. Defining the characteristic
for a given initial local maximum wave steepness ag=k,o, one can writek,hy=e,(ho/ o) and

in the limit of hy/ o —, the termkyh, tends to zero if the

The general second order solution for the surface dis-
steepness, goes to zero as

placements in deep water for long-crested waddiection
along thex axis) is'"*® ep o« (holo) ™1, (12)

with « a positive small number. This implies that, even if the
linear creshy is very large, one can always choose the steep-
nesse, small enough so that the nonlinear effects are weak.
= [kn = k| COLt, = ). (9 In Fig. 1 a plot of the time evolution &=0 of the wave
Here, i, =k, (Xo+X) - 0, T+&,, {a},.x are the amplitudes of group (X, T) and of its linear and nonlinear component as
the linear harmonics anée,},.x are undetermined phase well. As one can see, if the wave steepness is small, the
angles andk=x,+X. Assume that ak=x, a local maximum nonlinear term in Eq(11) does not modify the wave charac-

h occurs at timet=t,. Then, the free surface displacementte”St'CS of the Imgar group, expect fo_ravarlatlon in the crest
70X, T) satisfies the following conditions: and trough amplitudes. Further studies are needed to inves-

tigate the validity of Eq(11) in the context of a stochastic

7](X,t) = E a, cosy, + %E anam[(kn + km) COS(lﬂn + lpm)

7 —h dn _ +Fn “0: model for the space—time evolution of a wave in the neigh-
TOT0" R X xcormo . | xeormo borhood of a high crest, but this will not be discussed here.
Instead, we shall show that from Ed1) one can derive new
(10 ) ! i~ .
analytical expressions for the probabilities of exceeding both
and admits the following expressigaee Appendix A crest and trough amplitudes, which agree very well with both
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Monte Carlo simulations of second order random seas and  ¢&,,,4,= Bu - (S BuU?,

experimental data.

B. The nonlinear probabilities of exceeding the crest
height and the trough depth
As hy/ o0— o the nonlinear crest amplitudg. [from Eq.
(112) for X=0 andT=0] is given by
ho

4ga'4

hC=h0+

fJS(wl)Swz)[(wi+w§)
0 Jo

(13

- |w§ - wil]dwl dw,

and the nonlinear trougdhy; has the following expressidisee
Egs.(8) and(11)]:
ho

fir = ho - 4go?

f f S Sw( + oD
0 0

- |w§ - w%ﬂdwl d(,()z. (14)

Phys. Fluids 17, 026601 (2005)

(21)

where u has Rayleigh distribution as above. Some algebra
gives the following expression for the probability of exceed-
ing of the trough depth:

1 4aé\?
P(ftrough> §)=<exp{—p(1_ 1_%6) :|

o
- xp{—i(1+ 1—4;“5)2]>
© 807 B

X [1-H(¢- Bl(4a))],

whereH(x) is the step function.

The analytical distribution$20) and (22) are valid for
£>1 and wave steepnesg approaching zero ag 1™ for
&— o [see EQ(12)], so that the nonlinear effects are weak as
discussed in the preceeding section.

Note that these probabilities are consistent with the ex-
pression of the surface displacemeiiX,T) in Eqg.(11). For

(22)

Here, the nonlinear cregtrough amplitude is a quadratic the case of a wave cresy(X,T) gives the local space—time

function of the linear cresttrough amplitudeh,. Therefore
the probabilities of exceeding [Pe>h], P{hy>h] are
readily derived from the Rayleigh distribution b§ [see Eq.
(3)]. We set the change of variableg=w,/ wp, Wo=w,/ wp,

andw=w/ w, and define the nondimensional spectrum

SW) = 0, wpW)/ o2 (15)

The variancer,, of the second order surface displacement, is

easily derived from Eq(9) as

o2
ol = 7 (16)
where
1 e (° ("~ ~
—= \/l + —EJ f S(wp) S(Wy) (W3 + wi)dw; dws,.
B 2Jo Jo
(17)

Assuming the dimensionless wave crest height &s;
=hc/o,, EQ.(13) can be written as follows:

Ecrest= BU+ a(S),BUZ. (18)
Here, the nondimensional coefficientS) is given by
a="F f f Sw) S(wp)[(W5 + W)
0 J0
~ Wi = wa[Jdw, dw,. (19

Because the random variahle-hy/ o has the Rayleigh dis-
tribution, the probability of exceeding the crest is readily

derived, that is

2
P(gcrest> §)=exp{—i2<1_ 1+4%2‘§) :|

8a (20

Regarding the nonlinear wave trough depth setting the
nondimensional wave trough a&.,gi=hr/0o,, EQ. (14)
yields

structure of a high crest that occurs at a specified location at
a certain timgsee Fig. 1 for the time evolution of the group
at X=0). If the ratiohy/ o is very large, i.e.£>1, the linear
component of the crest amplitudig [see Eq(13)] tends to
diverge, but the nonlinear componenthgfis always smaller
than its linear counterpart since the wave steepagss0 as
&1 for £—o0. Moreover, from Eq(20) large wave crests
with ¢—o have a probability of occurrence approaching
zero.

From Eqs(18) and(21) it is evident that the dimension-
less crest heightc=hc/o, (trough depthér=hs/o,) is
greater(lower) than the linear pargu=hy/o, due to the
term «(S)Bu?. Therefore, asy increases, the crest be-
comes steeper and the trough becomes flatter than their
respective linear counterpdsg/ o, The parametew is then
a measure of the intensity of the nonlinear effects within the
second order theory. To this order only the skewness of the
surface elevation is influenced by the quadratic nonlineari-
ties, but its kurtosis is almost equal to its Gaussian value. In
fact, from Eq.(9) one can obtain

3 4
<Z—3> =6a+O(e2), <Z7> =3+0(ed).

(23

The wave heighH=hs—hy=2h, is equal to the linear wave
height, since the crest height increment is equal to the trough
depth decrement, as one can see from Ef#3) and (14).

Thus quadratic nonlinearities do not modify the linear wave
height, which instead can increase due to cubic nonlineari-
ties. In this case the kurtosis of the surface displacement can
increase such that steeper crests and deeper troughs can oc-
cur with the same probability. Jansééshowed that, due to
third order effects, the nonlinear energy transfer which oc-
curs during a large crest eve(fteak wave influences the
probability density function of the surface displacement so
that the kurtosis can reach values greater than its Gaussian
value. As a consequence, the tail distribution gives increased
probability of occurrence of large crest amplitudes, if com-
pared to the case of the Rayleigh law. It is clear that both
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second and third order effects modify the tail distribution of 2
the surface elevation, but the physical mechanisms which I (Y)
cause such deviations from the Gaussian law are different. 15 1
Second order effects are due to the so-called bound harmon-
ics, i.e., harmonics that do not satisfy the linear dispersion 1t .
relation. They modify the wave crest and trough so that the
skewness of the surface displacement is nonzero, but the g5l Is(¥) i
kurtosis is almost Gaussian. Third order effects, instead are
due to the four-wave interaction among free harmonics, i.e., 4 . . . .
harmonics which satisfy the linear dispersion relation. In this 1 2 3 4 5 6
case the nonlinear energy transfer modifies the wave height ¥
so that both the wave crests and troughs increase in ampli-
tude. No crest—trough asymmetry occurs as in the case of FIG. 2. The functiond (y) ande3/A=1,(y).
quadratic interaction.

Recently Guedes Soaresal ***°have shown that in the
sea state where abnormal waves occur the kurtosis is very s 5 , (w—1)2
high while the skewness is not so high. This indicates that ~F(W) =W exp — W™ exp) In yexp - 2
third order nonlinear effects need to be considered since
from Eq. (23) second order time series have skewness of (25)
order O(sp) and kurtosis almost Gaussian. More realistic The variances? can be computed by the expression
probabilistic model for freak waves should take into account 5
both quadratic and cubic interactions in the wave evolution, 02=Akv (7). (26)
as in the model proposed by Trulsen and Dngrfé.We where the functior () is defined as
point out that although the analytical probabilities in EQs. -
(20~(22) take into account only second order effects, the | ()= f F(w)dw. (27)
theory of quasideterminism of Boccdti can be extended to 0
consider third order nonlinearitiés,but this will be dis-
cussed elsewhere.

Note that the Phillips coefficienA is related to the wave
steepness, as S,ZFA'U(Y)- If one consider®A and y as the
C. The JONSWAP spectrum free parameters of the spectrum, the coefficiantan be

written as
In this section, the attention is focused on understanding

how the spectral parametefsand the Phillips parametex a= VAl (y). (28)

of the JONSWAP spectrum influence the probability of oc-Here,

currence of a wave crest according to the second order model J—

(20). Onoratoet al** solved the time-like NLS(TNLS) Lo(%) =LV (), (29

equa.tic.m by numerical 'te.:chniques anq observed that, as thenere we have defined the integral

coefficienty and the Phillips parametéyincreases, the non- Lo

linearities becomes more important and the probability of the 2

formation of the freak waves increases. Moreover, in On- JO fo Flw) FWo)L(wg + w3) = wi = wilJdwadw

oratoet al,*3 it is shown that the probability of exceeding the 11(7) = > 2

wave height tends to deviate from being Gaussian according 4<J F(w)dw)

to the TNLS equation or to DNLS equation proposed by 0

Trulsen and Dysth&>" In these simulations second order (30)

effects have been neglected, therefore the crest and trough ) ) ) )

distributions are nearly the same. oth th_e functlo_ns_a(y) ands_p/A_:Io(y) increase monotoni-
For the case of quadratic nonlinearities, the wave heighgally with y as it is shown in Fig. 2. This implies thgsee

is not modified, but the crest amplitude increases and thE9-(28)] the parametex increases as both andy increase.

trough depth decreases. For the JONSWAP specfsee AS a consequence, for the case of quadratic nonlinearities,

- - = - the probability of occurrence of large crgstough ampli-
Ei(\q/.e(f)gythe dimensionless spectrusiw) [see Eq.(19)] is tudes increase&lecreasesas both the enhancement coeffi-

cient y and the Phillips coefficienA increase, but the wave
height still follows the Rayleigh distribution.
~ Fw) Note that if one chooses the wave steepnrgsand y as
W)= —/——, (24) the free parameters of the spectrum, the parametan be

f F(w)dw written as follows:
’ a=ephi(y). (31)

Here(see Fig. 3, the functionl,(y) decreases monotonically
where with y for fixed steepness,. Therefore the coefficient
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0.58 T T T T T T T 10"

l1(y) P ,
0.56 - /
,I
4
0.54} 1 10° ¢ /A
/
7
0.52 /
i Eq. (22) /I
10° - ’/ 1
0.5} 1 // Rayleigh
.Y law
0.48 . . . . . . . . Narrow band S
1 2 3 4 5 6 7 8 9 Y10 . trough distr. ¢ o
Rl

FIG. 3. The function 4(y).

. . L. 107
decreases ag increases for fixed values ef, and it is lin-

early proportional to the steepness Let us note from Fig. et Narrow band £
3 thatl,(y) weakly varies asy changes, implying that 10° ; . . . . . s ‘
0 05 1 15 2 25 3 35 4 45 5
0.486p <a< O.58ep. (32
FIG. 4. Comparison between Rayleigh law, narrow-band second-order dis-
tributions, finite-band second-order distributiofi&gs. (20) and (22)] and
IV. VALIDATION data by numerical simulations with rectangular spectrum.

In this section we shall validate the distribution laws

(20) and(22) by specializing to th_e case'of rectangular specg ihe particular choice of the spectruf@3) for which
tra. The following spectral form is considered: <a.

1 Finally, we have performed second-order simulations
W) = Womee Wonr Winin < W < Winax (33  With a mean JONSWAP spectruwith parametersy=3.3
and A=0.012. The results are shown in Fig. 5. As one can
0 elsewhere, see the agreement with the analytical model is quite good.
with 1=w,;,=0,W,= 1, where the dominant frequency is
at w=1 and the mean period,=27/wy [©0n=wy(Wni
+Wma /2] coincides with the dominant periotl, =27/ w,.
The variancer? can be chosen by assigning the wave steep- Comparisons will now be made with the data of the
nesse,. The parametew can be evaluated explicitly by solv- wave elevation measured at the Draupner field in the central
ing analytically the double integral in E¢L9), obtaining the  North Sea, during the storms in the period from December
following expression: 31, 1994 to January 20, 1995. Wist al®? provided joint
2 frequency tables of successive wave crest heights and wave
(Wmin + Wmax) + min i i iri-
) (39 trough depths of the Draupner time series, so that the empiri

V. COMPARISONS WITH EXPERIMENTAL DATA

(Winin, Wiay) = €p

12 cal distributions are readily obtained. The peak frequency is
Note that for narrow-band spectrum 0,=0.55 rad/s and mean wave peridg, has a value of
a, = lim a=gyf2 (35

Whin—=1Wmax—1 ; : : : : : : ;
in agreement with the narrow-band probability of exceeding10®t P //,
(see, for example, Arena and Fecfé)eln order to validate ,/'
the new expressions for the probabilities of exceeding thegst YA
nonlinear crest and the nonlinear trough, we have performec /
Monte Carlo simulations: we have used E8) to generate _ .: /’k”y""ghs ;
realizations of a non-Gaussian sea state with the given spec Eq.(22) d/

trum (33), with roughly 50 000 waves. It is assumeq,;, .
=0.50,Wmay=1.50. We have choset,=0.10 for the simula-  '°
tions, which yields fora, 8 the following values:

«=0.038, $=0.992. (36)

In Fig. 4 the plots of the theoretical curviesee also Eq$20) JoE
and(22)] are compared against the probabilities of exceeding
derived from the Monte Carlo simulations and the relative
narrow-band distributions as we{k.,=0.050, 3.,=0.995. 93 05 1 15 2 25 3 35 4 45

The prObabllltI?S derived _f_r(_)m the simulations agree_we”FlG. 5. Comparison between Rayleigh law, narrow-band second-order dis-
with the analytical probabilities. Observe that the nonlinearyiytions, finite-band second-order distributiofigs. (20) and (22)] and

effects are less intense than the narrow-band case: this is dd&a by numerical simulations with mean JONSWAP spectrum.

1078
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10°F Rayleigh distr. E
Eq. (20) &
L0 S —— Forristall distr. E

6

FIG. 6. The probability of exceeding the crest height: comparison betweenF|G. 7. Comparisons with experimental data from Draupner time series.
Forristall model and the proposed analytical mdde. (20)]. Experimental

data from Draupner time series.

distribution which could be due to both the freak wave event

9.1 s. The significant wave heighi is between 6.0 and and statistical confidence.

8.0 m and the wave steepnessis in the range 0.05-0.06.

The average spectral density of all the wave data corresponds

to a JONSWAP spectrum with peakednessl.8.

Wist et al. compared both the 2D and 3D models of vvj. cONCLUSIONS

ForristalP*~2° against the Draupner data. They did not find

significant differences between the two modaise Fig. 6 in New analytical expressions for the probabilities of ex-

Ref. 32. Applying Forristall model for 2D long-crested ran- ceeding crest height and trough depth in a non-Gaussian sea

dom waves, his analytical distribution for the Draupner timestate have been derived based on the theory of quasideter-

series is the following: minism of Boccotti. The proposed distributions consider sec-
ond order nonlinearities due to finite-band spectra in deep
water. Monte Carlo simulations of nonlinear sea states with

5 both rectangular and JONSWAP spectra have been per-
Pe(£ores™ &) = exp{— (i) } (37) formed to validate the proposed analytical probabilities. The
4B agreement with the recent second order model of Forristall is

quite good and the comparison with the Draupner data set
has shown that the proposed model does not fully capture the
whereB;=0.370,8,=1.886 see Table 3 in Ref. 8By con-  empirical tail distribution which could be due to the freak
sidering a JONSWAP spectrum with the above characteriswave event or statistical confidence. The main result of this
tics with £,=0.06, the parameters of the new crest distribu-paper is that analytical models for the prediction of nonlinear
tion (16) are «=0.034, 3=0.988 for y=1.8. In Fig. 6 the €xtreme events can be derived by means of the theory of
plots of these two distributions are compared against th&uasideterminism of Boccotti.
Draupner data. The proposed distributi(20) agrees well
with Forristall model as expected, because the latter is based
on second order simulatioA3 Since the steepness is small,
choosing a different value ofye[1,10] gives 0.029< «
<0.035[see EQ.(32)]. In this range of values ofy, the

corresponding distribution curves are almost indistinguish-  ~onsider the assigned heighexpanded as
able from the curve fory=1.8 («=0.034. Therefore, within

APPENDIX A

the second order theory, for unidirectional waves in deep N=ho+hi+hy+ -, (A1)
water, the effects due to a finite-band spectrum are negligjhere ho,hy,h,,... areunknown parameters to be deter-
gible. The empirical and analytical distributiofisee Eqs. mined. We assume thaty<co, hyxo?,..., hyco™!, ...,

(20) and (22)] are plotted in Fig. 7. As one can see, thewhere ¢ is the standard deviation of the surface displace-
analytical curves compare well with the experimental datament. From the general soluti@®) the two conditions in Eq.
but they are not able to fully capture the empirical tail (10) give the following equations:
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ho+hy+hy+ - _ N ~
N LN N (X, T) = X &, cosy, (A6)
n=1
=2 7 c0sy+ 7 > X ananl (ky + kn)COS Iy + Iy)
n=1 n=1 m=1 where
~lka—k U= O], A2 ~ _h
| n m|COS( n m)] ( ) 5 = ;gS(wn)Aw (A?)
N 1 N N
0=- E ankn sin I, + ZE 2 ananl — (Kq + ky)? sin(9y, and
n=1 n=1m=1 _
=Kk X- w,T. A8
£ 9, + [k — k(K — k)sin(9, — 9,)], (A3) Un=koX = e (A8)

Because the wave group (X, T) attains a maximum afx
where 9, =Ko~ wptot+e,. If one assumes, = o, only the _ T=0), it follows that

first two terms in theh expansion are nonzero. All the terms

higher than the second order vanish. To the first order, Egs. N

(A2) and(A3) give, respectively, m(X=0,T=0)=hy0 glan =ho (A9)
N N
O(a), hy=> a,cosd, 0=>ak,sind, (A4 and
=1 =1 —_ N
n n I =00 D 3,sing,=0 (A10)
The second equation {#4) is satisfied if9,=0 On for any X | yeoreo 2 an Sinyn =

values of the coefficientda,},.x. This solution is not
unique, since solutions with nonzero phasgsxist for par-  (note thatrpnzo On at X=0, T=0). Moreover, the second
ticular choices of the coefficientga,},.x. Owing to the  order derivative
. - 6,9

quasideterminism theory by Boccotti*®° we shall prove —
that the conditiond,,=0 On is necessary and sufficient in ‘9_’72L
order to have a wave crest. In fact, #,=0 [On the first X
equation in(A4) gives

=- > akcosy,=- 2 aki <0
n

X=0,T=0 n
is always less than zero, confirming the existence of a local
ho=>, a,, (A5)  maximum, which is also the absolute maximum. Equations
n (A9) and (A10) are identical to EqS(A4) if =, 3,=a,,
which is the highest value théat can reach for an assigned Which implies

discrete spectrum{a,},.n. Therefore the conditiond, ho

=0 On implies that an absolute maximum is reached at a 9,=0 On andaﬂ:;S(wn)Aw- (Al11)
fixed pointx=x, at time instant=t, by the first order solu-

tion. Thus the conditiond,=0 On is sufficient and necessary in

From Boccotti's theory if a very large crest heighy  probability to guarantee that the linear component of the
occurs at a fixed point=x, at time instant=t,, with prob-  nonlinear wave groupy attains a very large maximum Xt
ability approaching 1, the free surface displacenjsae Eq. =0, T=0.

(8)] in discrete form is given by To the second order, EqEA2) and(A3) give

= 53 8l + )00 By + )~ Ky = oS5 = D],

O(d?) 1 (A12)
0= ZE anam — (k, + km)z sin(d, + Oy) + |kn - km|(kn = Kp)Sin(d, — 9 1.

Since it is9¥,=0 [n, the second equation in EGA12) is an P 5 1
identity, while the first equation gives the second order term 32 == 2 akj cos i, — :12 asanl (K,
X=0,T=0 n nm
of the wave crest
+ km)3 coq O+ V) = |kn - I(m|3 cog ¥,

1
hy = ZE anam[(kn + k) = |kn - km|]- (A13) - 9m)]
nm
Note that, atX=0, T=0 the second order spatial derivative, if 9,=0 [On reduces down to
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(927] 1
— 2 3
X2 - E ankn - ZE anam[(kn + km)
2 X=0,Y=0,T=0 n nm

- |kn_ km|3]-

Here, this expression is always less than zero sifige

+k)3-|k,—ky/2>0, confirming the existence of a local
maximum which is also the absolute maximum. By consid-

ering Eq.(A11), that is a,=hy/ °S(w,)Aw, we obtain, in
continuous form

h2 0 o)
hy = 4 04J f S(w1)S(w))[ (Ky(@y) + k(@) = [Ky(w1)
0 Jo Jo

- kz(wz)l]dwldwz-

Here, the wave numbeig, k, are given by

(A14)

Ki(wq) = wi/g, Ko(wy) = a)glg.

Phys. Fluids 17, 026601 (2005)

N
1
PY(X,T)= }‘1 Ea]? cogkX - w;T).
J:

According to the definition of wave spectrum in K@), the
continuous form of#’(X,T) is

W(X,T) = f“ S(w)cogkX - wT)dw. (B3)
0
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APPENDIX B

Using Eqg.(5), the spatial-time covarianc&(X,T) can
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V(X T) = (p(x,t)p(x+Xt+T))

N N
= 2 E A|]a1aj COik]X - wJT)

i=1 j=1
N N
i=1 j=1
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Aij = <COS{a)it —Ei]COStwjt —EJD,
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