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It is well known that in a Gaussian sea state for an infinitely narrow spectrum the crest height and
the trough depth follow the same Rayleigh distribution, because of linearity of the first order Stokes
expansion solution. For spectra of finite bandwidth, Boccotti obtained, as a corollary of his first
formulation of the theory of quasideterminism(which is exact to the first order in a Stokes
expansion), that the crest height and the trough depth still follow asymptotically the Rayleigh law
for high waves in Gaussian sea states. In this paper we extend the theory of quasideterminism of
Boccotti to the second-order, deriving new wave crest and wave trough distributions that take into
account nonlinear effects and are valid for finite bandwidth of the spectrum in deep water. Nonlinear
Monte Carlo simulations validate our theoretical predictions and comparisons with experimental
data and the recent model of Forristall are finally presented. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1831311]

I. INTRODUCTION

The first order Stokes solution of the free surface dis-
placement is a random Gaussian process of time.
Longuet-Higgins1 showed that for an infinitely narrow spec-
trum the wave height follows the Rayleigh distribution. Be-
cause of the symmetry of a Gaussian sea state the crest and
trough distributions follow the same Rayleigh law for narrow
spectra. For the case of spectra of finite bandwidth,
Boccotti2–9 showed as corollary of his first formulation of the
theory of quasideterminism that the crest height and the
trough depth still follow asymptotically the same Rayleigh
law for high wave amplitude(see also Lindgreen,10,11 Maes
and Breitung,12 Breitung,13 Sun,14 Leadbetter and Rootzen,15

and Kac and Slepian16).
If the nonlinear effects are not negligible, the probability

density functionpshd of the surface displacement tends to
deviate from being Gaussian. In particular, second order non-
linearities make high crests to be more probable than deep
troughs, i.e., the skewness ofpshd is not zero
(Longuet-Higgins17). Tayfun18,19 and Tung and Huang20 in-
vestigated the crest-trough symmetry, deriving the probabil-
ity distributions of both the second order crest and trough
under the hypothesis of narrow-band spectrum. Arena and
Fedele21 obtained the crest and the trough distributions of a
general nonlinear narrow-band stochastic family, which in-
cludes many processes in the mechanics of the sea waves
(either in an undisturbed field or in front of a vertical wall).
Other second order models have been proposed by Al-
Humoudet al.;22 Wu and Song23 derived the distribution of
local maxima by solving for the joint distribution of the sea
surface and its first derivative by the moment method. More-
over two models(Prevostoet al.,24 Forristall25) were pro-
posed for the crest height distribution of three dimensional

waves: they give results very close to each other and in good
agreement with field data(Prevosto and Forristall26).

Several authors have also investigated third order effects
as the modulation instability(see Janssen27 and references
herein). It is believed that they can cause the occurrence of
very large amplitude waves(freak waves). The mechanism
that could generate a freak wave is related to the four-wave
interaction(see Janssen,27 Komenet al.28). Nonlinear energy
transfer among nonresonant and resonant quartets is gov-
erned by the deterministic Zakharov integral differential
equation.29 Under the assumption of narrow-band spectrum,
the Zakharov equation reduces down to the nonlinear
Schrödinger equation(NLS). Trulsen et al.30 proposed an
enhanced NLS equation(DNLS) valid for broader spectral
bandwidth and larger steepness. Using this equation, Trulsen
and Dysthe31 showed that a freak wave can be generated
through nonlinear self-modulation of a slowly modulated
wave train. Their numerical solution of the DNLS equation
agrees very well with experimental record from the Draupner
time series(see also Wistet al.32 for details about this time
series). Onoratoet al.,33 solving numerically both the NLS
and DNLS equations, showed that the cumulative probability
density function of the wave heights deviates from the Ray-
leigh distribution: high wave heights are more probable than
when judged by the Rayleigh law. For the case of a
JONSWAP spectrum, they found that the deviation from the
Rayleigh law increases, as both the enhancement coefficient
g and the Phillips parameter increase(see also Onoratoet
al.34). Experimental work on the influence of the modulation
instability on the cumulative probability function of wave
crests has been presented by Stansberg.35

In this paper, unidirectional waves in deep water are con-
sidered. Based on the work of Boccotti2–9 new analytical
wave crest and trough distributions are derived. They take
into account second-order effects and are valid for finite
bandwidth of the spectrum in deep water(see alsoa)Telephone:11-802-656-8140. Electronic mail: ffedele@emba.uvm.edu
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Longuet-Higgins36 for an alternative analysis).
Boccotti showed that in a Gaussian sea state, if it is

known that a very high local maximum(minimum)—very
high with respect to the mean crest height(trough depth)—
occurs in some time and location, this implies that a well-
defined quasideterministic wave group generates the highest
local maximum (minimum) which tends to be the crest
(trough) of its wave. As corollary he derived that both the
probabilities of exceeding the crest and trough amplitude fol-
low asymptotically the Rayleigh distribution.

The main result of this paper is that second order ana-
lytical models for the prediction of extreme events can be
derived by means of the theory of quasideterminism of
Boccotti.2–9 This theory can also be extended to consider
third order nonlinearities as shown recently by Fedele,37 but
this will be discussed in a future paper.

The authors, starting from the general second order
Stokes solution of the surface displacement for long-crested
waves, showed that the amplitude of the nonlinear crest
(trough) depends upon the linear crest(trough) amplitude.
Thus the probability distributions of the nonlinear crest and
trough are obtained.

Numerical distributions obtained by Monte Carlo simu-
lations of nonlinear second order Gaussian sea states are in
agreement with our analytical results. Comparisons with ex-
perimental data and with the recent model of Forristall26,27

are finally discussed.

II. THE THEORY OF QUASIDETERMINISM

The theory of quasideterminism of Boccotti2–9 is now
presented for the case of unidirectional random waves in
deep water(the direction is along thex axis). Similar analy-
sis holds for the general case of short-crested random waves.

If in a Gaussian sea state it is known that a very high
local maximum occurs in some location and time, this im-
plies with high probability that a well-defined wave group
generates the high local maximum. In detail, let us assume
that a local wave maximum of given elevationh0 occurs at a
time t= t0 at a fixed pointx=x0. If h0/s→`, i.e., the crest is
very high with respect to the mean crest height, then with
probability approaching 1, the surface displacement atx
=x0+X is asymptotically equal to the deterministic form

h̄LsX,Td =
CsX,Td
Cs0,0d

h0, s1d

being s the standard deviation of the free surface displace-
menthsx,td. The space–time covarianceCsX,Td is given by

CsX,Td ; khsx,tdhsx + X,t + Tdl, s2d

where

kfstdl = lim
t→`

1

t
E

0

t

fstddt

is the time average. An exceptionally high local maximum,
with a very high degree of probability, is also a wave crest of
its wave, because the space–time covariance function
CsX,Td attains its absolute maximum atsX=0,T=0d as it
will be shown below. A direct consequence is that the num-

ber of wave crests exceeding a fixed thresholdb tends to
coincide with the number of local wave maxima exceeding
it, provided the fixed threshold is very high. As a conse-
quence, the number of wave crests exceeding a very high
threshold b tends to coincide with the number ofb up-
crossingssb+d, that is

Ncrsb;Dtd
N+sb;Dtd

→ 1 asb/s → `.

Here,Ncrsb;Dtd andN+sb;Dtd denote, respectively, the num-
ber of wave crests exceeding the thresholdb and the number
of b+ in the very large time intervalDt. Since(see Boccotti9)

N+sb;Dtd ~ expS−
b2

2s2DDt

the probability of exceeding a wave crest height admits the
following asymptotic expression:

Psh0 . bd =
N+sb;Dtd
N+s0;Dtd

= expS−
b2

2s2D asb/s → `, s3d

which is the well-known Rayleigh distribution.
The quasideterministic wave grouph̄L: In physical space

h̄LsX,Td represents the evolution of a wave group which
reaches its absolute maximumh0 at time t= t0 at the fixed
point x=x0. SetSsvd as the unidirectional JONSWAP spec-
trum,

Ssvd = Ag2v−5 expF−
5

4
S v

vp
D−4G

3expHln g expF−
sv − vpd2

2x2vp
2 GJ , s4d

wherevp is the peak frequency,A is the Phillips parameter
and g is the enhancement coefficient andx=0.08. As the
parameterg increases, the spectrum becomes higher and nar-
rower around the spectral peak(see Onoratoet al.34). For
g=1 andA=0.0081, Eq.(4) reduces down to the Pierson–
Moskowitz spectrum. Thej th order moment of the spectrum
is

mj =E
0

`

Ssvdv j dv.

In particularm0 is the variances2 of the surface displace-
ment. According to the theory of sea states(see Boccotti9), to
the first order in a Stokes expansion, the surface displace-
ment hsx,td is a realization of the following stationary er-
godic Gaussian process:

hsx,td = o
n=1

N

an cossknx − vnt + «nd. s5d

Here, it is assumed that the frequenciesvn are different from
each other, the numberN is infinitely large, and the phase
angles«n, uniformly distributed inf0,2pg, are stochastically
independent of each other. In deep water the wave numbers
are given bykn=vn

2/g. Furthermore, all the amplitudesan are
defined such that
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o
j

1

2
aj

2 = SsvdDv with v − Dv/2 , v j , v + Dv/2.

s6d

This gives

s2 = Cs0,0d = o
j=1

N
1

2
aj

2 = o
j=1

N

Ssv jdDv =
Dv→0E

0

`

Ssvddv

and the space–time covarianceCsX,Td in Eq. (2) has the
following expression(see Appendix B):

CsX,Td =E
0

`

SsvdcosskX− vTddv. s7d

Let us observe thatCsX,Td reaches its absolute maximum
s2 at sX=0,T=0d. The surface displacementh̄L is then given
by

h̄LsX,Td = ±
h0

s2E
0

`

SsvdcosskX− vTddv, s8d

where the plus and minus signs are for an initial condition at
t= t0 as a crest or a trough, respectively. Because of the sym-
metry of a Gaussian process, if a large trough occurs at a
time t= t0 at a fixed pointx=x0, with probability approaching
1 the surface displacement has a expression as Eq.(1) with a
minus sign. In this caseh0 is the amplitude of the wave
trough.

III. STATISTICS OF WEAKLY NONLINEAR WAVES

For the case of unidirectional waves in deep water ana-
lytical solutions for the probabilities of exceeding the second
order nonlinear wave crest and trough are derived. A similar
analysis also applies to the case of multidirectional waves,
but this will not be discussed here.

A. Nonlinear free surface displacement in deep water
for a given initial local maximum

The general second order solution for the surface dis-
placements in deep water for long-crested waves(direction
along thex axis) is17,28

hsx,td = o
n

an coscn +
1

4o
n,m

anamfskn + kmd cosscn + cmd

− ukn − kmu cosscn − cmdg. s9d

Here,cn=knsx0+Xd−vnT+«n, hanjnP: are the amplitudes of
the linear harmonics andh«njnP: are undetermined phase
angles andx=x0+X. Assume that atx=x0 a local maximum
h occurs at timet= t0. Then, the free surface displacement
h̄sX,Td satisfies the following conditions:

uh̄uX=0,T=0 = h, U ]h̄

]X
U

X=0,T=0
= 0, U ]2h̄

]X2U
X=0,T=0

, 0;

s10d

and admits the following expression(see Appendix A):

h̄sX,Td =
h0

s2E
0

`

Ssvdcossg−1v2X − vTddv

+
h0

2

4gs4E
0

` E
0

`

Ssv1dSsv2d

3hsv1
2 + v2

2dcosfg−1sv1
2 + v2

2dX − sv1 + v2dTg

− uv1
2 − v2

2ucosfg−1sv1
2 − v2

2dX

− sv1 − v2dTgjdv1 dv2. s11d

Here, according to Boccotti’s theory, the amplitudeh0 of the
linear wave crest is assumed to be very large if compared to
the mean wave crest amplitude, i.e.,h0/s→`. Letting kp

=vp
2/g, the wave number at the peak frequency, the ratio

between the first term and the second term in Eq.(11) is of
orderOskph0d. Therefore, the expression ofh̄sX,Td is valid
as long as the nonlinear effects are weak, which means that
the parameterkph0 must be small. Defining the characteristic
wave steepness as«p=kps, one can writekph0=«psh0/sd and
in the limit of h0/s→`, the termkph0 tends to zero if the
steepness«p goes to zero as

«p ~ sh0/sd−1+k, s12d

with k a positive small number. This implies that, even if the
linear cresth0 is very large, one can always choose the steep-
ness«p small enough so that the nonlinear effects are weak.
In Fig. 1 a plot of the time evolution atX=0 of the wave
group h̄sX,Td and of its linear and nonlinear component as
well. As one can see, if the wave steepness is small, the
nonlinear term in Eq.(11) does not modify the wave charac-
teristics of the linear group, expect for a variation in the crest
and trough amplitudes. Further studies are needed to inves-
tigate the validity of Eq.(11) in the context of a stochastic
model for the space–time evolution of a wave in the neigh-
borhood of a high crest, but this will not be discussed here.
Instead, we shall show that from Eq.(11) one can derive new
analytical expressions for the probabilities of exceeding both
crest and trough amplitudes, which agree very well with both

FIG. 1. The time evolution of the wave grouph̄sX,Td and of its linear and
nonlinear component atX=0.
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Monte Carlo simulations of second order random seas and
experimental data.

B. The nonlinear probabilities of exceeding the crest
height and the trough depth

As h0/s→` the nonlinear crest amplitudehC [from Eq.
(11) for X=0 andT=0] is given by

hC = h0 +
h0

2

4gs4E
0

` E
0

`

Ssv1dSsv2dfsv1
2 + v2

2d

− uv1
2 − v2

2ugdv1 dv2 s13d

and the nonlinear troughhT has the following expression[see
Eqs.(8) and (11)]:

hT = h0 −
h0

2

4gs4E
0

` E
0

`

Ssv1dSsv2dfsv1
2 + v2

2d

− uv1
2 − v2

2ugdv1 dv2. s14d

Here, the nonlinear crest(trough) amplitude is a quadratic
function of the linear crest(trough) amplitudeh0. Therefore
the probabilities of exceeding PrfhC.hg, PrfhT.hg are
readily derived from the Rayleigh distribution ofh0 [see Eq.
(3)]. We set the change of variablesw1=v1/vp, w2=v2/vp,
andw=v /vp and define the nondimensional spectrum

S̃swd = vpSsvpwd/s2. s15d

The variancesh of the second order surface displacement, is
easily derived from Eq.(9) as

sh
2 =

s2

b2 , s16d

where

1

b
=Î1 +

«p
2

2
E

0

` E
0

`

S̃sw1dS̃sw2dsw1
4 + w2

4ddw1 dw2.

s17d

Assuming the dimensionless wave crest height asjcrest

=hC/sh, Eq. (13) can be written as follows:

jcrest= bu + asSdbu2. s18d

Here, the nondimensional coefficientasSd is given by

asSd =
«p

4
E

0

` E
0

`

S̃sw1dS̃sw2dfsw1
2 + w2

2d

− uw1
2 − w2

2ugdw1 dw2. s19d

Because the random variableu=h0/s has the Rayleigh dis-
tribution, the probability of exceeding the crest is readily
derived, that is

Psjcrest. jd = expF−
1

8a2S1 −Î1 +
4aj

b
D2G . s20d

Regarding the nonlinear wave trough depthhT, setting the
nondimensional wave trough asjtrough=hT/sh, Eq. (14)
yields

jtrough= bu − asSdbu2, s21d

where u has Rayleigh distribution as above. Some algebra
gives the following expression for the probability of exceed-
ing of the trough depth:

Psjtrough. jd = SexpF−
1

8a2S1 −Î1 −
4aj

b
D2G

− expF−
1

8a2S1 +Î1 −
4aj

b
D2GD

3 f1 − Hsj − b/s4addg, s22d

whereHsxd is the step function.
The analytical distributions(20) and (22) are valid for

j@1 and wave steepness«p approaching zero asj−1+k for
j→` [see Eq.(12)], so that the nonlinear effects are weak as
discussed in the preceeding section.

Note that these probabilities are consistent with the ex-
pression of the surface displacementh̄sX,Td in Eq. (11). For
the case of a wave crest,h̄sX,Td gives the local space–time
structure of a high crest that occurs at a specified location at
a certain time(see Fig. 1 for the time evolution of the group
at X=0). If the ratioh0/s is very large, i.e.,j@1, the linear
component of the crest amplitudehC [see Eq.(13)] tends to
diverge, but the nonlinear component ofhC is always smaller
than its linear counterpart since the wave steepness«p→0 as
j−1+k for j→`. Moreover, from Eq.(20) large wave crests
with j→` have a probability of occurrence approaching
zero.

From Eqs.(18) and(21) it is evident that the dimension-
less crest heightjC=hC/sh (trough depthjT=hT/sh) is
greater(lower) than the linear partbu=h0/sh due to the
term asSdbu2. Therefore, asa increases, the crestjC be-
comes steeper and the troughjT becomes flatter than their
respective linear counterparth0/sh. The parametera is then
a measure of the intensity of the nonlinear effects within the
second order theory. To this order only the skewness of the
surface elevation is influenced by the quadratic nonlineari-
ties, but its kurtosis is almost equal to its Gaussian value. In
fact, from Eq.(9) one can obtain

kh3l
s3 = 6a + Os«p

2d,
kh4l
s4 = 3 +Os«p

2d. s23d

The wave heightH=hC−hT=2h0 is equal to the linear wave
height, since the crest height increment is equal to the trough
depth decrement, as one can see from Eqs.(13) and (14).
Thus quadratic nonlinearities do not modify the linear wave
height, which instead can increase due to cubic nonlineari-
ties. In this case the kurtosis of the surface displacement can
increase such that steeper crests and deeper troughs can oc-
cur with the same probability. Janssen27 showed that, due to
third order effects, the nonlinear energy transfer which oc-
curs during a large crest event(freak wave) influences the
probability density function of the surface displacement so
that the kurtosis can reach values greater than its Gaussian
value. As a consequence, the tail distribution gives increased
probability of occurrence of large crest amplitudes, if com-
pared to the case of the Rayleigh law. It is clear that both
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second and third order effects modify the tail distribution of
the surface elevation, but the physical mechanisms which
cause such deviations from the Gaussian law are different.
Second order effects are due to the so-called bound harmon-
ics, i.e., harmonics that do not satisfy the linear dispersion
relation. They modify the wave crest and trough so that the
skewness of the surface displacement is nonzero, but the
kurtosis is almost Gaussian. Third order effects, instead are
due to the four-wave interaction among free harmonics, i.e.,
harmonics which satisfy the linear dispersion relation. In this
case the nonlinear energy transfer modifies the wave height
so that both the wave crests and troughs increase in ampli-
tude. No crest–trough asymmetry occurs as in the case of
quadratic interaction.

Recently Guedes Soareset al.38,39have shown that in the
sea state where abnormal waves occur the kurtosis is very
high while the skewness is not so high. This indicates that
third order nonlinear effects need to be considered since
from Eq. (23) second order time series have skewness of
order Os«pd and kurtosis almost Gaussian. More realistic
probabilistic model for freak waves should take into account
both quadratic and cubic interactions in the wave evolution,
as in the model proposed by Trulsen and Dysthe.30,31 We
point out that although the analytical probabilities in Eqs.
(20)–(22) take into account only second order effects, the
theory of quasideterminism of Boccotti2–9 can be extended to
consider third order nonlinearities,37 but this will be dis-
cussed elsewhere.

C. The JONSWAP spectrum

In this section, the attention is focused on understanding
how the spectral parametersg and the Phillips parameterA
of the JONSWAP spectrum influence the probability of oc-
currence of a wave crest according to the second order model
(20). Onorato et al.34 solved the time-like NLS(TNLS)
equation by numerical techniques and observed that, as the
coefficientg and the Phillips parameterA increases, the non-
linearities becomes more important and the probability of the
formation of the freak waves increases. Moreover, in On-
oratoet al.,33 it is shown that the probability of exceeding the
wave height tends to deviate from being Gaussian according
to the TNLS equation or to DNLS equation proposed by
Trulsen and Dysthe.30,31 In these simulations second order
effects have been neglected, therefore the crest and trough
distributions are nearly the same.

For the case of quadratic nonlinearities, the wave height
is not modified, but the crest amplitude increases and the
trough depth decreases. For the JONSWAP spectrum[see

Eq. (4)] the dimensionless spectrumS̃swd [see Eq.(15)] is
given by

S̃swd =
Fswd

E
0

`

Fswddw

, s24d

where

Fswd = w−5 expF−
5

4
w−4GexpHln g expF−

sw − 1d2

2x2 GJ .

s25d

The variances2 can be computed by the expression

s2 = Akp
−2Issgd, s26d

where the functionIssgd is defined as

Issgd =E
0

`

Fswddw. s27d

Note that the Phillips coefficientA is related to the wave
steepness«p as«p

2=AIssgd. If one considersA andg as the
free parameters of the spectrum, the coefficienta can be
written as

a = ÎAIasgd. s28d

Here,

Iasgd = I1sgdÎIssgd, s29d

where we have defined the integral

I1sgd =

E
0

` E
0

`

Fsw1dFsw2dfsw1
2 + w2

2d − uw1
2 − w2

2ugdw1dw2

4SE
0

`

FswddwD2 .

s30d

Both the functionsIasgd and«p
2/A= Issgd increase monotoni-

cally with g as it is shown in Fig. 2. This implies that[see
Eq. (28)] the parametera increases as bothA andg increase.
As a consequence, for the case of quadratic nonlinearities,
the probability of occurrence of large crest(trough) ampli-
tudes increases(decreases) as both the enhancement coeffi-
cient g and the Phillips coefficientA increase, but the wave
height still follows the Rayleigh distribution.

Note that if one chooses the wave steepness«p andg as
the free parameters of the spectrum, the parametera can be
written as follows:

a = «pI1sgd. s31d

Here(see Fig. 3), the functionI1sgd decreases monotonically
with g for fixed steepness«p. Therefore the coefficienta

FIG. 2. The functionsIasgd and«p
2/A= Issgd.
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decreases asg increases for fixed values of«p and it is lin-
early proportional to the steepness«p. Let us note from Fig.
3 that I1sgd weakly varies asg changes, implying that

0.48«p , a , 0.58«p. s32d

IV. VALIDATION

In this section we shall validate the distribution laws
(20) and(22) by specializing to the case of rectangular spec-
tra. The following spectral form is considered:

S̃swd = 5 1

wmax− wmin
, wmin , w , wmax,

0 elsewhere,
6 s33d

with 1ùwminù0,wmaxù1, where the dominant frequency is
at w=1 and the mean periodTm=2p /vm fvm=vpswmin

+wmaxd /2g coincides with the dominant periodTp=2p /vp.
The variances2 can be chosen by assigning the wave steep-
ness«p. The parametera can be evaluated explicitly by solv-
ing analytically the double integral in Eq.(19), obtaining the
following expression:

aswmin,wmaxd = «p

swmin + wmaxd2 + 2wmin
2

12
. s34d

Note that for narrow-band spectrum

a` = lim
wmin→1,wmax→1

a = «p/2 s35d

in agreement with the narrow-band probability of exceeding
(see, for example, Arena and Fedele21). In order to validate
the new expressions for the probabilities of exceeding the
nonlinear crest and the nonlinear trough, we have performed
Monte Carlo simulations: we have used Eq.(9) to generate
realizations of a non-Gaussian sea state with the given spec-
trum (33), with roughly 50 000 waves. It is assumedwmin

=0.50,wmax=1.50. We have chosen«p=0.10 for the simula-
tions, which yields fora ,b the following values:

a = 0.038, b = 0.992. s36d

In Fig. 4 the plots of the theoretical curves[see also Eqs.(20)
and(22)] are compared against the probabilities of exceeding
derived from the Monte Carlo simulations and the relative
narrow-band distributions as well(a`=0.050, b`=0.995).
The probabilities derived from the simulations agree well
with the analytical probabilities. Observe that the nonlinear
effects are less intense than the narrow-band case: this is due

to the particular choice of the spectrum(33) for which a
,a`.

Finally, we have performed second-order simulations
with a mean JONSWAP spectrum(with parametersg=3.3
andA=0.012). The results are shown in Fig. 5. As one can
see the agreement with the analytical model is quite good.

V. COMPARISONS WITH EXPERIMENTAL DATA

Comparisons will now be made with the data of the
wave elevation measured at the Draupner field in the central
North Sea, during the storms in the period from December
31, 1994 to January 20, 1995. Wistet al.32 provided joint
frequency tables of successive wave crest heights and wave
trough depths of the Draupner time series, so that the empiri-
cal distributions are readily obtained. The peak frequency is
vp=0.55 rad/s and mean wave periodTm has a value of

FIG. 3. The functionI1sgd.

FIG. 4. Comparison between Rayleigh law, narrow-band second-order dis-
tributions, finite-band second-order distributions[Eqs. (20) and (22)] and
data by numerical simulations with rectangular spectrum.

FIG. 5. Comparison between Rayleigh law, narrow-band second-order dis-
tributions, finite-band second-order distributions[Eqs. (20) and (22)] and
data by numerical simulations with mean JONSWAP spectrum.
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9.1 s. The significant wave heighths is between 6.0 and
8.0 m and the wave steepness«p is in the range 0.05–0.06.
The average spectral density of all the wave data corresponds
to a JONSWAP spectrum with peakednessg=1.8.

Wist et al. compared both the 2D and 3D models of
Forristall24–26 against the Draupner data. They did not find
significant differences between the two models(see Fig. 6 in
Ref. 32). Applying Forristall model for 2D long-crested ran-
dom waves, his analytical distribution for the Draupner time
series is the following:

PFsjcrest. jd = expF− S j

4b1
Db2G , s37d

whereb1=0.370,b2=1.886 see Table 3 in Ref. 32). By con-
sidering a JONSWAP spectrum with the above characteris-
tics with «p=0.06, the parameters of the new crest distribu-
tion (16) are a=0.034, b=0.988 for g=1.8. In Fig. 6 the
plots of these two distributions are compared against the
Draupner data. The proposed distribution(20) agrees well
with Forristall model as expected, because the latter is based
on second order simulations.25 Since the steepness is small,
choosing a different value ofgP f1,10g gives 0.029,a

,0.035 [see Eq.(32)]. In this range of values ofa, the
corresponding distribution curves are almost indistinguish-
able from the curve forg=1.8 sa=0.034d. Therefore, within
the second order theory, for unidirectional waves in deep
water, the effects due to a finite-band spectrum are negli-
gible. The empirical and analytical distributions[see Eqs.
(20) and (22)] are plotted in Fig. 7. As one can see, the
analytical curves compare well with the experimental data,
but they are not able to fully capture the empirical tail

distribution which could be due to both the freak wave event
and statistical confidence.

VI. CONCLUSIONS

New analytical expressions for the probabilities of ex-
ceeding crest height and trough depth in a non-Gaussian sea
state have been derived based on the theory of quasideter-
minism of Boccotti. The proposed distributions consider sec-
ond order nonlinearities due to finite-band spectra in deep
water. Monte Carlo simulations of nonlinear sea states with
both rectangular and JONSWAP spectra have been per-
formed to validate the proposed analytical probabilities. The
agreement with the recent second order model of Forristall is
quite good and the comparison with the Draupner data set
has shown that the proposed model does not fully capture the
empirical tail distribution which could be due to the freak
wave event or statistical confidence. The main result of this
paper is that analytical models for the prediction of nonlinear
extreme events can be derived by means of the theory of
quasideterminism of Boccotti.

APPENDIX A

Consider the assigned heighth expanded as

h = h0 + h1 + h2 + ¯ , sA1d

where h0,h1,h2, . . . are unknown parameters to be deter-
mined. We assume thath0~s, h1~s2, . . . , hn~sn+1, . . . ,
where s is the standard deviation of the surface displace-
ment. From the general solution(9) the two conditions in Eq.
(10) give the following equations:

FIG. 6. The probability of exceeding the crest height: comparison between
Forristall model and the proposed analytical model[Eq. (20)]. Experimental
data from Draupner time series.

FIG. 7. Comparisons with experimental data from Draupner time series.
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h0 + h1 + h2 + ¯

= o
n=1

N

an cosqn +
1

4o
n=1

N

o
m=1

N

anamfskn + kmdcossqn + qmd

− ukn − kmucossqn − qmdg, sA2d

0 = − o
n=1

N

ankn sinqn +
1

4o
n=1

N

o
m=1

N

anamf− skn + kmd2 sinsqn

+ qmd + ukn − kmuskn − kmdsinsqn − qmdg, sA3d

where qn=knx0−vnt0+«n. If one assumesan~s, only the
first two terms in theh expansion are nonzero. All the terms
higher than the second order vanish. To the first order, Eqs.
(A2) and (A3) give, respectively,

Ossd, h0 = o
n=1

N

an cosqn, 0 =o
n=1

N

ankn sinqn. sA4d

The second equation in(A4) is satisfied ifqn=0 ∀n for any
values of the coefficientshanjnP:. This solution is not
unique, since solutions with nonzero phasesqn exist for par-
ticular choices of the coefficientshanjnP:. Owing to the
quasideterminism theory by Boccotti,2–4,6,9 we shall prove
that the conditionqn=0 ∀n is necessary and sufficient in
order to have a wave crest. In fact, ifqn=0 ∀n the first
equation in(A4) gives

h0 = o
n

an, sA5d

which is the highest value thath0 can reach for an assigned
discrete spectrumhanjnP:. Therefore the conditionqn

=0 ∀n implies that an absolute maximum is reached at a
fixed pointx=x0 at time instantt= t0 by the first order solu-
tion.

From Boccotti’s theory if a very large crest heighth0

occurs at a fixed pointx=x0 at time instantt= t0, with prob-
ability approaching 1, the free surface displacement[see Eq.
(8)] in discrete form is given by

h̄LsX,Td = o
n=1

N

ãn cosc̃n, sA6d

where

ãn =
h0

s2SsvndDv sA7d

and

c̃n = knX − vnT. sA8d

Because the wave grouph̄LsX,Td attains a maximum atsX
=0,T=0d, it follows that

h̄LsX = 0,T = 0d = h0 ⇒ o
n=1

N

ãn = h0 sA9d

and

U ]h̄L

]X
U

X=0,T=0
= 0 ⇒ o

n=1

N

ãn sin c̃n = 0 sA10d

(note thatc̃n=0 ∀n at X=0, T=0). Moreover, the second
order derivative

U ]2h̄L

]X2 U
X=0,T=0

= − o
n

ankn
2 cosc̃n = − o

n

ankn
2 , 0

is always less than zero, confirming the existence of a local
maximum, which is also the absolute maximum. Equations

(A9) and (A10) are identical to Eqs.(A4) if c̃n=cn, ãn=an,
which implies

qn = 0 ∀ n andan =
h0

s2SsvndDv. sA11d

Thus the conditionqn=0 ∀n is sufficient and necessary in
probability to guarantee that the linear component of the
nonlinear wave grouph̄ attains a very large maximum atX
=0, T=0.

To the second order, Eqs.(A2) and (A3) give

Oss2d5h1 =
1

4o
n,m

anamfskn + kmdcossqn + qmd − ukn − kmucossqn − qmdg,

0 =
1

4o
n,m

anamf− skn + kmd2 sinsqn + qmd + ukn − kmuskn − kmdsinsqn − qmdg.6 sA12d

Since it isqn=0 ∀n, the second equation in Eq.(A12) is an
identity, while the first equation gives the second order term
of the wave crest

h1 =
1

4o
n,m

anamfskn + kmd − ukn − kmug. sA13d

Note that, atX=0, T=0 the second order spatial derivative,

U ]2h̄

]X2U
X=0,T=0

= − o
n

ankn
2 cosqn −

1

4o
n,m

anamfskn

+ kmd3 cossqn + qmd − ukn − kmu3 cossqn

− qmdg

if qn=0 ∀n reduces down to
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U ]2h̄

]X2U
X=0,Y=0,T=0

= − o
n

ankn
2 −

1

4o
n,m

anamfskn + kmd3

− ukn − kmu3g.

Here, this expression is always less than zero sinceskn

+kmd3− ukn−kmu3.0, confirming the existence of a local
maximum which is also the absolute maximum. By consid-
ering Eq. (A11), that is an=h0/s2SsvndDv, we obtain, in
continuous form

h1 =
h0

2

4s4E
0

` E
0

`

Ssv1dSsv2dfsk1sv1d + k2sv2dd − uk1sv1d

− k2sv2dugdv1dv2. sA14d

Here, the wave numbersk1,k2 are given by

k1sv1d = v1
2/g, k2sv2d = v2

2/g.

Finally, we have that, if a very large crest height occurs, the
second order height may be written as

h = h0 +
h0

2

4s4E
0

` E
0

`

Ssv1dSsv2dfsk1sv1d + k2sv2dd

− uk1sv1d − k2sv2dugdv1 dv2 + oss2d. sA15d

More in general, the second order free surface displacement,
when a very high crest occurs at time instantt0 at pointx0 is
given by

h̄sX,Td =
h0

s2E
0

`

SsvdcossksvdX − vTddv

+
h0

2

4gs4E
0

` E
0

`

Ssv1dSsv2dhsk1sv1d

+ k2sv2ddcosfsk1sv1d + k2sv2ddX − ssv1

+ v2dTdg − usk1sv1d − k2sv2dducosfsk1sv1d

− k2sv2ddX − sv1 − v2dTgjdv1 dv2, sA16d

whereksvd=v2/g.

APPENDIX B

Using Eq.(5), the spatial–time covarianceCsX,Td can
be written as

CsX,Td ; khsx,tdhsx + X,t + Tdl

= o
i=1

N

o
j=1

N

Aijaiaj cosskjX − v jTd

− o
i=1

N

o
j=1

N

Bijaiaj sinskjX − v jTd, sB1d

where

Aij = kcosfvit − «̃igcosbv jt − «̃ jcl,

sB2d
Bij = kcosfvit − «̃igsinbv jt − «̃ jcl,

and «̃ j =kjx0. Since Aij =di j /2 and Bij =0, in Eq. (B1) the
following simplification holds:

CsX,Td ; o
j=1

N
1

2
aj

2 cosskjX − v jTd.

According to the definition of wave spectrum in Eq.(6), the
continuous form ofCsX,Td is

CsX,Td =E
0

`

SsvdcosskX− vTddv. sB3d
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