WAVE GROUPS AND EXTREME EVENTS IN RANDOM SEAS

Francesco Fedele Dept. of Civil Engineering University of Vermont Burlington, Vermont USA

Freak waves, rogue waves and giant waves

Gaussian seas and extreme waves

Freak waves

DRAUPNER EVENT JANUARY 1995

STOKES EQUATIONS FOR REGULAR WAVES

$$\eta(x,t) = \sum_{j=1}^{N} a_j \cos(k_j x + \omega_j t + \varepsilon_j)$$

Stationarity

Ergodicity

Gaussianity

 $\Pr[\eta(t_0) > z] = \frac{\# \text{ realizations in which } \eta \text{ is greater than } z \text{ at the time } t_0}{\# \text{ realizations}}$

ERGODIC THEOREM

$$\eta(t) = \sum_{j=1}^{N} a_j \cos(\omega_j t + \varepsilon_j) \qquad \overline{\eta} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \eta(\tau) d\tau$$

$$\eta(t) = h \qquad \qquad \overline{\eta} \neq \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \eta(\tau) d\tau = h$$

A STATIONARY GAUSSIAN NON ERGODIC PROCESS

$\eta(t) = h$ h constant gaussian

TYPICAL WAVE SPECTRA FROM MEDITERRANEAN SEA

Wind generated waves: basic concepts

143

TIME DOMAIN ANALYSIS :

NECESSARY AND SUFFICIENT CONDITIONS TO HAVE A HIGH WAVE

$$\eta(0) = \frac{H}{2} \qquad \eta(T^*) = -\frac{H}{2}$$

$$\psi(T) = \left\langle \eta(x_0, t_0) \eta(x_0, t_0 + T) \right\rangle$$

TIME DOMAIN : THE CONDITIONS ARE NECESSARY

$$\eta(0) = \frac{H}{2} \qquad \eta(T^*) = -\frac{H}{2} \qquad \qquad \frac{H}{\sigma} \to \infty$$

$\Pr[\eta(0) = \xi H + d\eta_1, \, \eta(T) = (1 - \xi)H + d\eta_2] \quad ?$

$$P(H,\xi,T) \propto \exp\left[-\frac{1}{2}\left(\frac{\sigma^2}{\sigma^2 - \psi(T)} + \beta\left(\xi - \frac{1}{2}\right)^2\right)\left(\frac{H}{\sigma}\right)^2\right]$$

PROBABILITY OF EXCEEDANCE OF THE WAVE HEIGHT

Asymptotic expressions of Boccotti valid for any shape of sprectrum

$$P[H] = \exp\left[-\frac{1}{4(1+\psi^*)}\left(\frac{H}{\sigma}\right)^2\right] \quad per \quad \frac{H}{\sigma} \to \infty$$

SPACE-TIME DOMAIN ANALYSIS

What happens in the neighborhood of a point \mathbf{x}_0 if a large crest followed by large trough are recorded in time at \mathbf{x}_0 ?

$$\left[\eta(\mathbf{x}_0 + \mathbf{X}, t_0 + T) \in \left(u, u + du\right)\right]$$

Pr

conditioned to

$$\eta(\mathbf{x}_0, t_0) = H / 2, \ \eta(\mathbf{x}_0, t_0 + T_2^*) = -H / 2$$

 $\delta(u-\eta_c(\mathbf{x}_0+\mathbf{X},t_0+T))$

TIME DOMAIN ANALYSIS : SUCCESSIVE WAVE CRESTS

Necessary and sufficient conditions for the occurrence of two high wave crests

 $\eta(t_0) = h_1, \quad \eta(t_0 + T_2^*) = h_2$

Autocovariance function

$$\psi(T) = \left\langle \eta(x_0, t_0) \eta(x_0, t_0 + T) \right\rangle$$

TIME DOMAIN : THE CONDITIONS ARE SUFFICIENT

$$\frac{h_1}{\sigma} \to \infty, \quad \frac{h_2}{\sigma} \to \infty$$

$$\Pr\begin{bmatrix} \eta(t_0 + T) \in (u, u + du) \\ conditioned \ to \ \eta(t_0) = h_1, \ \eta(t_0 + T_2^*) = h_2 \end{bmatrix} \to \qquad \delta[u - \eta_c(t_0 + T)]$$

$$\eta_{c}(t_{0}+T) = \frac{h_{1} - h_{2}\psi(T_{2}^{*})/\psi(0)}{1 - (\psi(T_{2}^{*})/\psi(0))^{2}}\psi(T) + \frac{h_{2} - h_{1}\psi(T_{2}^{*})/\psi(0)}{1 - (\psi(T_{2}^{*})/\psi(0))^{2}}\psi(T - T_{2}^{*})$$

TIME DOMAIN : *THE CONDITIONS ARE NECESSARY* $EX_{c}(h_{1},h_{2},\tau)$

Expected number of local maxima of the surface displacement $\eta(t)$ of amplitude h_0 which are followed by a local maximum with amplitude h_1 after a time lag τ

as $h_0 \to \infty$, $h_1 \to \infty$

Corollary : joint probability of successive wave crests

MONTE CARLO SIMULATIONS OF GAUSSIAN SEAS

SPACE-TIME DOMAIN ANALYSIS

What happens in the neighborhood of a point \mathbf{x}_0 if two large successive wave crests are recorded in time at \mathbf{x}_0 ?

$$\Pr\begin{bmatrix} \eta(\mathbf{x}_0 + \mathbf{X}, t_0 + T) \in (u, u + du) \\ \text{conditioned to} \quad \eta(\mathbf{x}_0, t_0) = h_1, \ \eta(\mathbf{x}_0, t_0 + T_2^*) = h_2 \end{bmatrix}$$
$$\begin{bmatrix} \frac{h_1}{\sigma} \to \infty, & \frac{h_2}{\sigma} \to \infty \\ \delta(u - \eta_c(\mathbf{x}_0 + \mathbf{X}, t_0 + T)) \end{bmatrix}$$

$$\eta_{c}(\mathbf{X},T) = \frac{\psi(0)h_{1} - h_{2}\psi(T_{2}^{*})}{\psi^{2}(0) - \psi(T_{2}^{*})^{2}} \Psi(\mathbf{X},T) + \frac{\psi(0)h_{2} - h_{1}\psi(T_{2}^{*})}{\psi^{2}(0) - \psi(T_{2}^{*})^{2}} \Psi(\mathbf{X},T - T_{2}^{*})$$

 $\Psi(\mathbf{X},T) = \left\langle \eta(x_0,t_0)\eta(x_0+\mathbf{X},t_0+T) \right\rangle$

SPACE-TIME covariance

WAVE GROUP DYNAMICS

Nonlinear water waves

WEAKLY NONLINEAR ANALYSIS

THE ZAKHAROV EQUATION

$$\eta(\underline{\mathbf{x}},t) = \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} B_n(t) \exp(\underline{\mathbf{k}}_n \cdot \underline{\mathbf{x}} + \omega_n t) + c.c.$$

$$\frac{dB_n}{dt} + i\omega_n B_n = -i\sum_{p,q,r} T_{npqr} \delta_{n+p-q-r} B_p^* B_q B_r$$

Conserved quantities : Hamiltonian , wave action and momentum

$$\mathbf{H} = \sum_{n} \omega_{n} B_{n}(t) B_{n}^{*}(t) + \frac{1}{2} \sum_{n, p, q, r} T_{npqr} \delta_{n+p-q-r} B_{n}^{*}(t) B_{p}^{*}(t) B_{q}(t) B_{r}(t)$$

$$\mathbf{A} = \sum_{n} B_{n}(t) B_{n}^{*}(t)$$

$$\mathbf{M} = \sum_{n} \mathbf{k}_{n} B_{n}(t) B_{n}^{*}(t)$$
Quartet interaction
$$\mathbf{k}_{q}$$

$$\mathbf{k}_{n} + \mathbf{k}_{p} = \mathbf{k}_{q} + \mathbf{k}_{r}$$

$$\mathbf{M} = \sum_{n} \mathbf{k}_{n} B_{n}(t) B_{n}^{*}(t)$$

SUFFICIENT CONDITIONS TO HAVE AN EXTREME CREST

$$\eta(\underline{\mathbf{x}},t) = \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} |B_n(t)| \cos(\underline{\mathbf{k}}_n \cdot \underline{\mathbf{x}} + \omega_n t + |\varphi_n(t)|) \qquad B_n(t) = |B_n(t)| \exp[i\varphi_n(t)]$$

Set initial conditions

$$B_n(t=-t_0)=\widetilde{B}_n\exp(i\widetilde{\varphi}_n)$$

At (x=0, t=0) we impose that all the harmonic components are in phase (focusing)

$$\varphi_n(0) = 0 \qquad n = 1, \dots N$$

$$\underbrace{\frac{dB_n}{dt} + i\omega_n B_n = -i\sum_{p,q,r} T_{npqr}\delta_{n+p-q-r}B_p^*B_qB_r}$$

From the ZAKHAROV EQUATION

$$\nabla \eta = 0$$
 and $\frac{\partial \eta}{\partial t} = 0$ at $(\mathbf{x} = 0, t = 0)$

Stationarity at (x=0,t=0)

Amplitude at (x=0,t=0)

$$H_{\max} = \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} \left| B_n(0) \right|$$

SUFFICIENT CONDITIONS TO HAVE AN EXTREME CREST

Maximum amplitude at (x=0,t=0)

$$H_{\max} = \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} \left| B_n(0) \right|$$

Optimization problem

$$\max \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} |B_n(0)|$$

with the following constraints

$$\sum_{n} \omega_{n} |B_{n}(0)|^{2} + \frac{1}{2} \sum_{n,p,q,r} T_{npqr} \delta_{n+p-q-r} |B_{n}(0)| |B_{p}(0)| |B_{q}(0)| |B_{r}(0)|$$

$$=\sum_{n}\omega_{n}\widetilde{B}_{n}^{2}+\frac{1}{2}\sum_{n,p,q,r}T_{npqr}\delta_{n+p-q-r}\widetilde{B}_{n}\widetilde{B}_{p}\widetilde{B}_{q}\widetilde{B}_{r}$$

$$\sum_{n} |B_{n}(0)|^{2} = \sum_{n} \widetilde{B}_{n}^{2} \qquad \sum_{n} \mathbf{k}_{n} |B_{n}(0)|^{2} = \sum_{n} \mathbf{k}_{n} \widetilde{B}_{n}^{2}$$

HOW TO CHOOSE THE INITIAL CONDITIONS

Theory of Quasi-Determinism of Boccotti

$$\eta_{det}(\underline{\mathbf{x}},t) = \frac{H}{\sigma^2} \int E(\underline{\mathbf{k}}) \cos(\underline{\mathbf{k}}_n \cdot \underline{\mathbf{x}} - \omega_n t) d\underline{\mathbf{k}} \qquad \frac{H}{\sigma} \to \infty$$

$$\frac{N_{cr}(b,T)}{N_{+}(b,T)} \to 1 \qquad if \quad \frac{H}{\sigma} \to \infty$$

$$\Pr[H > b] = \frac{N_+(b,T)}{N_+(0,T)} = \exp\left(-\frac{b^2}{2\sigma^2}\right) \qquad \text{if } \frac{b}{\sigma} \to \infty$$

Discrete form
$$\eta_{det}(\underline{\mathbf{x}},t) = \frac{H}{\sigma^2} \sum_n \frac{1}{2} a_n^2 \cos(\underline{\mathbf{k}}_n \cdot \underline{\mathbf{x}} - \omega_n t) \qquad \frac{H}{\sigma} \to \infty$$

Initial conditions which give the highest crest at (x=0,t=0) for linear waves

$$\widetilde{B}_n = \frac{\pi H}{2\sigma^2 \sqrt{\omega_n/2g}} a_n^2 \qquad \qquad \widetilde{\varphi}_n = 0 \qquad \qquad n = 1, \dots N$$

THE CONSTRAINED OPTIMIZATION PROBLEM

$$\max_{(X_1,\dots,X_N)\in\mathfrak{R}^N} \sum_n w_n X_n \qquad X_n \ge 0$$

$$\sum_{n} X_{n}^{2} = \sum_{n} \widetilde{X}_{n}^{2} \qquad \qquad \sum_{n} \mathbf{k}_{n} X_{n}^{2} = \sum_{n} \mathbf{k}_{n} \widetilde{X}_{n}^{2}$$

$$\sum_{n} w_{n} X_{n}^{2} + \varepsilon^{2} \sum_{n,p,q,r} T_{npqr} \delta_{n+p-q-r} X_{n} X_{p} X_{q} X_{r} = \sum_{n} w_{n} \widetilde{X}_{n}^{2} + \varepsilon^{2} \sum_{n,p,q,r} T_{npqr} \delta_{n+p-q-r} \widetilde{X}_{n} \widetilde{X}_{p} \widetilde{X}_{q} \widetilde{X}_{r}$$

$$H_{\text{max}} = (1+\lambda)H$$
 $\frac{H}{\sigma} \to \infty$ $\lambda = \frac{1}{\pi} \sum \sqrt{w_n} X_n - 1$

THE EXTREME CREST AMPLITUDE

Third order effects due to nonlinear interaction of free harmonics

$$H_{\text{max}} = (1+\lambda)H$$
 $\frac{H}{\sigma} \to \infty$ $\lambda = \frac{1}{\pi} \sum \sqrt{w_n} X_n - 1$

Second order effects due to bound harmonics $h = \sum_{n} A_{n} + \frac{1}{4} \sum_{n,s} \Gamma_{ns} A_{n} A_{s}$ $H_{\text{max}} = (1 + \lambda)H + \alpha k_{d} H^{2}$ $\alpha = \frac{1}{4\pi^{2}} \sum_{n,s} \Gamma_{ns} \sqrt{w_{n} w_{s}} X_{n} X_{s}$

$$\Pr(H_{\max} > h) = \exp\left[-\frac{(1+\lambda)^2}{8\varepsilon^2 \alpha^2} \left(1 - \sqrt{1 + \frac{4\varepsilon\alpha}{(1+\lambda)^2} \frac{h}{\sigma}}\right)\right]$$

TIME SERIES FROM NUMERICAL SIMULATIONS

Linear waves

Nonlinear waves

ENERGY SPECTRUM

What is the definition of Probability of exceedance ?

 $P[H] = \frac{number \ of \ waves \ with \ height \ greater \ than \ H}{total \ number \ of \ waves}$

 $P[Z] = \frac{number of waves with crest greater than Z}{total number of waves}$

A NEW ANALYTICAL EXPRESSION FOR THE PROBABILITY OF EXCEEDANCE OF A WAVE CREST

$$\Pr(H_{\max} > h) = \exp\left[-\frac{h^2}{2(1+\lambda)^2 \sigma^2}\right]$$

$$\Pr(H_{\max} > h) = \exp\left[-\frac{(1+\lambda)^2}{8\varepsilon^2 \alpha^2} \left(1 - \sqrt{1 + \frac{4\varepsilon\alpha}{(1+\lambda)^2} \frac{h}{\sigma}}\right)\right]$$

Monte Carlo validation

Evolution of the spectrum

JONSWAP SPECTRA AND DRAUPNER DATA

$$\Pr(H_{\max} > h) = \exp\left[-\frac{(1+\lambda)^2}{8\varepsilon^2 \alpha^2} \left(1 - \sqrt{1 + \frac{4\varepsilon\alpha}{(1+\lambda)^2} \frac{h}{\sigma}}\right)\right]$$

