ON WAVE GROUPS IN A RANDOM SEA

Francesco Fedele

Dept. of Mechanical Engineering University of Vermont Burlington, Vermont USA

One of the beauty of the nature

DRAUPNER EVENT JANUARY 1995

Freak waves, rogue waves and giant waves

Gaussian seas and extreme waves

Stokes Equations for regular waves

Gaussian seas

Typical wave spectra from Mediterranean sea*

*from Boccotti P. Wave Mechanics 2000 Elsevier

Time domain analysis

NECESSARY AND SUFFICIENT CONDITIONS TO HAVE A HIGH WAVE

Space-time domain analysis*

What happens in the neighborhood of a point \mathbf{x}_0 if a large crest followed by large trough are recorded in time at \mathbf{x}_0 ?

$$\left[\eta(\mathbf{x}_0 + \mathbf{X}, t_0 + T) \in (u, u + du)\right]$$

Pr

 $\begin{bmatrix} conditioned & to \\ \eta(\mathbf{x}_0, t_0) = H/2, \ \eta(\mathbf{x}_0, t_0 + T_2^*) = -H/2 \end{bmatrix}$ $\int_{\nabla} \frac{H}{\sigma} \to \infty$

$$\delta(\boldsymbol{u}-\boldsymbol{\eta}_c(\mathbf{x}_0+\mathbf{X},t_0+T))$$

* Boccotti P. Wave Mechanics 2000 Elsevier

Time domain analysis: successive wave crests*

Necessary and sufficient conditions for the occurrence of two high wave crests

$$\eta(t_0) = h_1, \quad \eta(t_0 + T_2^*) = h_2$$

Autocovariance function

$$\psi(T) = \left\langle \eta(x_0, t_0) \eta(x_0, t_0 + T) \right\rangle$$

* Fedele F., Successive wave crests in a Gaussian sea, Probabilistic Eng. Mechanics 2005 (to appear)

Corollary: joint probability successive wave crests*

* Fedele F., Successive wave crests in a Gaussian sea, Probabilistic Eng. Mechanics 2005 (to appear)

Space-time domain analysis

What happens in the neighborhood of a point \mathbf{x}_0 if two large successive wave crests are recorded in time at \mathbf{x}_0 ?

$$\Pr\begin{bmatrix} \eta(\mathbf{x}_0 + \mathbf{X}, t_0 + T) \in (u, u + du) \\ \text{conditioned to} \quad \eta(\mathbf{x}_0, t_0) = h_1, \ \eta(\mathbf{x}_0, t_0 + T_2^*) = h_2 \end{bmatrix}$$
$$\begin{bmatrix} h_1 \\ \sigma \to \infty, & \frac{h_2}{\sigma} \to \infty \\ \delta(u - \eta_c(\mathbf{x}_0 + \mathbf{X}, t_0 + T)) \end{bmatrix}$$

$$\eta_{c}(\mathbf{X},T) = \frac{\psi(0)h_{1} - h_{2}\psi(T_{2}^{*})}{\psi^{2}(0) - \psi(T_{2}^{*})^{2}} \Psi(\mathbf{X},T) + \frac{\psi(0)h_{2} - h_{1}\psi(T_{2}^{*})}{\psi^{2}(0) - \psi(T_{2}^{*})^{2}} \Psi(\mathbf{X},T - T_{2}^{*})$$

 $\Psi(\mathbf{X},T) = \left\langle \eta(x_0,t_0)\eta(x_0+\mathbf{X},t_0+T) \right\rangle$

SPACE-TIME covariance

Linear wave group dynamics

Nonlinear evolution of the linear wave group

$$\eta(\underline{\mathbf{x}},t) = \frac{1}{\pi} \sum_{n} \sqrt{\frac{\omega_n}{2g}} B_n(t) \exp(i\underline{\mathbf{k}}_n \cdot \underline{\mathbf{x}}) + c.c.$$

$$\frac{dB_n}{dt} + i\omega_n B_n = -i\sum_{p,q,r} T_{npqr} \delta_{n+p-q-r} B_p^* B_q B_r$$

Quartet interaction $\underline{\mathbf{k}}_n + \underline{\mathbf{k}}_p = \underline{\mathbf{k}}_q + \underline{\mathbf{k}}_r$

k,

 $\underline{\mathbf{k}}_n$

Conserved quantities : Hamiltonian , wave action and momentum

$$\mathbf{H} = \sum_{n} \omega_{n} B_{n}(t) B_{n}^{*}(t) + \frac{1}{2} \sum_{n, p, q, r} T_{npqr} \delta_{n+p-q-r} B_{n}^{*}(t) B_{p}^{*}(t) B_{q}(t) B_{r}(t)$$
$$\mathbf{M} = \sum_{n} \mathbf{k}_{n} B_{n}(t) B_{n}^{*}(t) \qquad \mathbf{A} = \sum_{n} B_{n}(t) B_{n}^{*}(t)$$

Sufficient conditions to have an extreme crest*

At (x=0, t=0) we impose that all the harmonic components are in phase (focusing)

$$\varphi_n(0) = 0 \qquad n = 1, \dots N$$

$$H_{NL} = (1 + \lambda)H_L \qquad \lambda = \lambda \left(\left\{ |B_n(0)| \right\} \right)$$

*Fedele F. The occurrence of Extreme crests and the nonlinear wave-wave interaction in random seas, PROCEEDINGS of XIV International Offshore and Polar Engineering Conference (ISOPE) Toulon, FRANCE may 23-28 2004

The narrow band limit* The nonlinear Schrodinger (NLS) equation

Particular case of the ZAKHAROV EQUATION

$$\frac{\partial A}{\partial t} + i \frac{\partial^2 A}{\partial x^2} + i \frac{\partial^2 A}{\partial x^2} + i \frac{\partial^2 A}{\partial t^2} |A|^2 A = 0$$

*Fedele F. The occurrence of Extreme crests and the nonlinear wave-wave interaction in random seas, PROCEEDINGS of XIV International Offshore and Polar Engineering Conference (ISOPE) Toulon, FRANCE may 23-28 2004

Recurrent solutions* & Intermittency

IF ENERGY CONTENT OF SMALL SCALES IS SMALL IT REMAINS SMALL FOR ALL THE TIME

ENERGY PERPETUALLY DISTRIBUTED BETWEEN FINITE SET OF MODES → RECURRENT SOLUTIONS

BENJAMIN-FEIR INSTABILITY & FERMI-ULAM PASTA RECURRENCE

*Thyagaraja. Recurrent motions in certain continuum dynamical systems Physics of Fluids 22(11) 1979, pp. 2093-2096

Monte-Carlo simulations

Quasi-solitonic wave turbulence*

$$i\frac{\partial\hat{a}_k}{\partial t} = \omega(k)\hat{a}_k + \iiint T_{123k}\hat{a}_1\hat{a}_2\hat{a}_3^*\delta(k_1 + k_2 - k_3 - k)dk_1dk_2dk_3$$

 $A(x,t) = \int \hat{a}_k(t) \exp(ikx) dk$

*Cai, Majda, Laughlin & Tabak, **Dispersive wave turbulence in one dimension** PHYSICA D 152-153 (2001) 551-572 Zakharov, Dias & Pushkarev, **One-dimensional wave turbulence** Physics reports 398 (2004) 1-65