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Abstract

In the context of Gaussian waves, if two successive wave crests of amplitude h1 and h2,

respectively, are recorded in time at a fixed point x0 then in the limit of h1 !1 and h2 !1,

with probability approaching 1, a wave group has passed closed by the point x0 at the apex of

its development stage, giving rise to an isolated extreme crest. The two large successive wave

crests occur at x0 during the initial phase of decay of the wave group and they are lagged in

time by T�2 þOðh�11 ; h�12 Þ, T�2 being the abscissa of the second absolute maximum of the time

covariance function cðTÞ of the surface displacement.

Thus, either an isolated extreme crest event or two consecutive extreme crest events are

particular realizations of the space–time evolution of a wave group, in agreement with the

theory of quasi determinism of Boccotti [2000. Wave Mechanics for Ocean Engineering.

Elsevier, Oxford].

This result is of relevant interest for offshore engineering. Firstly, the design of offshore

structures resisting to a double wave impact can be based on the wave forces generated by the

mechanics of a single wave group. On the other hand, in the context of nonlinear water waves,

extreme events and their probability of occurrence can be investigated by studying the

nonlinear evolution of a wave group.
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1. Introduction

In the context of Gaussian waves, in the early seventies Lindgren proved that in the
time domain, locally to a very high crest, the surface displacement tends to assume the
shape of the autocovariance function cðTÞ ¼ hZðtÞZðtþ TÞi where h�i is the time
average operator (cf. Lindgren, 1970, 1972). Tromans et al. (1991) used this time-
domain formulation to analyze wave measurements and renamed it as ‘new wave
theory’. Wave statistics has been studied by Longuet-Higgins (1952) who proved that
the wave heights of a narrow-band Gaussian sea are distributed according to the
Rayleigh form. Because of the symmetry of the Gaussian sea state both crest and
trough distributions follow the same Rayleigh law for narrow-band spectra. For more
general Gaussian processes with finite-band spectra, it is well known that the Rayleigh
distribution is an upper bound for the probability of exceedance of both crest heights
and crest-to-trough wave heights. It is also well known that the Rayleigh law tends to
be asymptotically exact in the limit of large crest amplitudes (cf. Sun, 1993; Maes and
Breitung, 1997). As regard to the crest-to-trough wave heights, variants of the Rayleigh
distribution which take into account the effects due to the finite bandwidth of the
spectrum have been proposed by Longuet-Higgins (1980) and Naess (1985). A
rigorous derivation of the exact asymptotic expression for the probability of
exceedance of crest-to-trough wave heights, irrespective of bandwidth of the spectrum,
have been derived for the first time, in the eighties, by Boccotti (1981, 1982, 1983, 1989)
as a corollary of his theory of quasi-determinism. Boccotti (1997, 2000) formulated his
theory revealing the mechanics of three-dimensional wave groups and their relation to
the occurrence of extreme waves in a Gaussian sea. The theory was verified in the
nineties with some small-scale field experiments both for waves in an undisturbed field
(cf. Boccotti et al., 1993a) and for waves interacting with structures (cf. Boccotti et al.,
1993b). An alternative approach for the derivation of the quasi-determinism theory
was proposed by Phillips et al. (1993a) who also obtained a field verification off the US
Atlantic coast (Phillips et al., 1993b). There are two versions of the theory of quasi-
determinism: the first version deals with the extreme crest height, whereas the second
one deals with the extreme wave height. Both the versions are congruent to each other
because they both reveal that either an extreme crest height or a wave height are
particular realizations of the evolution of a well defined wave group (cf. Boccotti, 2000,
482pp). In particular, an extreme crest occurs at the point x0 when a wave group passes
through x0 with the crest of its central wave exactly at the envelope center. The wave
group has reached its maximal contraction at the point x0 and after it tends to decay.
If an extreme wave height is recorded at the point x0 instead, it means that the
wave group has reached its maximal contraction before the point x0. In this case,
the wave group passes through the point x0 in its initial phase of decay and the zero
downcrossing of the central wave coincides with the envelope center.

As corollary of his theory, Boccotti (1989, 2000) derived the asymptotic form of
the probability distribution of the crest-to-trough wave height Hw as

PrðHw4HÞ ¼ c exp �
H2

4s2ð1þ c�Þ

� �
;

H

s
!1,
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where the factor c is given by

c ¼
1þ €c

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 €c
�
ð1þ c�Þ

q ,

where

c� ¼
jcðT�Þj
cð0Þ

; €c
�
¼
€cðT�Þ

j €cð0Þj
.

Here, dots denote time derivatives, T� is the abscissa of the first absolute minimum
of the autocovariance function cðTÞ and c� is a narrow bandedness parameter. This
probability of exceedance is asymptotically exact in the limit of large wave height
amplitudes H, i.e. H=s!1, irrespective of the bandwidth of the spectrum. In the
limit of narrow-band spectra, that is c� ! 1, the factor c! 1 and Boccotti
distribution simplifies to the distribution proposed by Naess (1985) where he
assumed T� ’ Tm=2, Tm being the mean wave period. Naess distribution is
asymptotically correct in the narrow-band limit since T� ! Tm=2 reducing down to
the well known Rayleigh form. The exact narrow-band limit form of the crest-to-
trough height distribution has been obtained by Tayfun (1981, 1990). Boccotti
distribution agrees very well with Monte Carlo simulations and experimental data
and it is approximately exact for H=s43:5 (cf. Boccotti, 2000, 308pp).

In this paper the theory of quasi-determinism of Boccotti is revisited in order to
emphasize a special aspect of it: the mechanics of the single wave group. The main
goal is to show that the single wave group can be thought as a ‘gene’ of a Gaussian
sea when the interest is in the dynamics of the surface displacement at high amplitude
levels. Thus extreme events are most likely to occur because of the dynamics of a
single wave group.

In the context of Boccotti’s theory, Fedele (2005) showed that if two large
successive wave crests of amplitude h1 and h2, respectively, are recorded in time at a
fixed point x0 then, in the limit of h1!1 and h2!1, with probability
approaching 1, the two successive wave crests are lagged in time by T�2 þOðh�11 ; h�12 Þ,
T�2 being the abscissa of the second absolute maximum of the autocovariance
function cðTÞ of the surface displacement. As a corollary, Fedele showed that the
joint probability density function of two successive wave crests follows asympto-
tically a Rayleigh distribution.

In this paper we first revisit the time domain analysis of Fedele (2005) and then
some results from Monte Carlo simulations are presented to validate his theoretical
conclusions. The analysis is then extended to the space–time domain and it will
surprisingly reveal a relation between the occurrence of two successive wave crests
and the evolution of a wave group.

If two extreme consecutive crests occur at a certain location x0 in time, what
happened in the space–time neighborhood of x0? What caused the formation of two
extreme crests at x0? An infinite set of feasible wave scenarios can be proposed that
may cause the occurrence of two consecutive wave crests. For an example, it may be
possible that two, or more than two wave groups, travelling along different
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directions with different speeds, meet at x0 and two consecutive wave crest are
formed in time at x0. It may also be possible that there are two wave groups which
are following each other at different speeds so that the fast group will catch up with
the slow group when two wave crests occur at x0. The theory of quasi-determinism of
Boccotti excludes all the previous scenarios because they are unlikely to occur. The
space–time domain analysis presented in this paper surprisingly reveals that if two
consecutive exceptionally high wave crests are recorded at a point x0 during a sea
storm, most probably, a well defined single wave group has transited at that point in
the early stage of its decay. Thus, it is the same wave group that generates either an
isolated extreme crest events or two consecutive extreme crest events; in the former
case the wave group is in its configuration of max development, whereas in the latter
case the wave group is beginning its phase of decay.

The relevance of this result is twofold. Firstly, it reveals that the dynamics of a
Gaussian sea at high amplitude levels is governed by the evolution of a single
wave group. On the other hand, this result is believed to be of relevant interest for
offshore engineering. The design of offshore structures resisting to a double wave
impact, can be based on the wave forces generated by the mechanics of a single
wave group.

Note that the theory of quasi-determinism presented here has also been
extended to investigate the weakly nonlinear evolution of a wave group due to
both second-order effects (cf. Fedele and Arena, 2005; Arena and Fedele, 2005) and
third-order effects as the four wave resonance interaction (cf. Fedele, 2004, 2006)
providing new form of distributions for the wave crest statistics. Thus, the theory of
quasi-determinism is a powerful mathematical means for studying extreme
events and their probability of occurrence in the context of linear and nonlinear
water waves.
2. The theory of quasi-determinism

In the following Boccotti’s theory is presented for the general case of three-
dimensional random waves (cf. Boccotti, 1989, 2000). Assume that a large wave crest
of amplitude H have been recorded at point x ¼ x0 ¼ ðx0; y0Þ at time t ¼ t0 and
define s as the standard deviation of the surface displacement. Boccotti has proven
that as H=s!1, with probability approaching one, a well defined wave group has
passed through the point x ¼ x0 when the apex of its development stage occurred at
time t ¼ t0. If H=s!1, i.e. the crest is very high with respect to the mean crest
height, then with probability approaching 1, the surface displacement in the
neighborhood of x ¼ x0 and t ¼ t0 is asymptotically equal to the deterministic form

xdetðx0 þ X; t0 þ TÞ ¼ H
CðX;TÞ
Cð0; 0Þ

, (1)

Here, X ¼ ðX ;Y Þ and CðX;TÞ is the space–time covariance given by

CðX;TÞ ¼ hxðx0; tÞxðx0 þ X; tþ TÞi, (2)



ARTICLE IN PRESS

F. Fedele / Ocean Engineering 33 (2006) 2225–2239 2229
where

hf ðtÞi ¼ lim
T!1

1

T

Z T

0

f ðtÞdt

is the time average. Note that Cð0; 0Þ ¼ s2. As an application consider unidirectional
Gaussian waves along the X-axis. According to the theory of sea states (see
Appendix), for a given wave spectrum SðoÞ, the space–time covariance function
CðX ;TÞ can be computed as

CðX ;TÞ ¼
Z 1
0

SðoÞ cosðkX � oTÞdo, (3)

where o is the wave frequency related to the wave number k through the linear
dispersion relation o2=g ¼ k tanhðkdÞ with g as the acceleration due to gravity. Then
from Eq. (1) the unidirectional wave group is given by

xcðX ;TÞ ¼ H

Z 1
0

SðoÞ cosðkX � oTÞdo. (4)

This wave group evolves in the X-direction so that the highest crest of amplitude
H occurs at X ¼ 0 and T ¼ 0. The wave group then begins its phase of decay and
the highest wave occurs with a crest-to-trough amplitude Hw ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð 1� c�

p
Þ, T�

being the abscissa of the first absolute minimum of the time covariance function
cðTÞ ¼ Cð0;TÞ. Thus it is the same wave group in Eq. (4) that forms either the
highest crest or the highest wave height. In the former case the wave group is in its
configuration of max development, whereas in the latter case the wave group is in its
configuration of initial phase of decay. Boccotti showed that in the limit of
Hw=s!1, the highest wave, with probability approaching 1, has a crest-to-trough
period Tw almost equal to T� and the crest and trough amplitudes tend to be equal.
These analytical results are in perfect agreement with Monte Carlo simulations of a
Gaussian sea with mean JONSWAP spectrum (cf. Hasselmann et al., 1973). In Fig. 1
the data points ðTw=T�;Hw=sÞ obtained from Monte Carlo simulations are plotted.
As one can see, for larger wave amplitudes Hw=s the ratio Tw=T� is closer to 1.
From Fig. 2, the data points ðHcr=H tr;Hw=sÞ obtained from Monte Carlo
simulations are plotted where Hcr and H tr are the crest and trough amplitudes,
respectively. For Hw=sb1, the ratio Hcr=H tr is closer to 1 implying the crest–trough
symmetry of the highest wave. The JONSWAP spectrum used in the Monte Carlo
simulations is in the following form:

SðoÞ ¼ Ag2o�5p

o
op

� ��5
exp �

5

4

o
op

� ��4" #
exp ln g exp �

ðo� opÞ
2

2w22o
2
p

" #( )
.

Here, op is the peak frequency, A is the Phillips parameter, g is the enhancement
coefficient. For typical wind waves, one can assume g ¼ 3:3 and w2 ¼ 0:08 . For g ¼ 1
and A ¼ 0:0081 the Pierson–Moskowitz spectrum is recovered. Hereafter
op ¼ 2p=Tp, Tp being the peak period and Lp the correspondent wavelength. Note
that the moments of the JONSWAP spectrum exist as far as m3. By cutting off the
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Fig. 1. Data points ðTw=T�;Hw=sÞ obtained from Monte Carlo simulations of a Gaussian sea with mean

JONSWAP spectrum. Here, Tw is the crest-to-trough period and Hw is the wave amplitude.

Fig. 2. Data points ðHcr=Htr;Hw=sÞ obtained fromMonte Carlo simulations of a Gaussian sea with mean

JONSWAP spectrum. Here, Hcr and Htr are the crest and trough amplitudes, respectively, and Hw is the

wave amplitude.

F. Fedele / Ocean Engineering 33 (2006) 2225–22392230
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high-frequency tails, one can define a new spectrum over a compact support and all
the moments then exist. As pointed out by Boccotti (2000, 296pp) ‘the high
frequency term does not alter the crest elevation, nor the trough depth, nor the time
interval between the crest and trough, nor the wave period. It simply ruffles the wave
surface with a lot of very small ripples’. In the applications, the JONSWAP spectrum
SðoÞ can be considered in the frequency range o 2 ½0; 6op� when the interest is in the
analysis of the wave crest, wave trough or wave height.
3. The occurrence of two successive wave crests in the time domain

Let us consider the recorded time-series ZðtÞ ¼ xðx0; tÞ of the surface displacement
xðx; tÞ at any fixed point x ¼ x0 ¼ ðx0; y0Þ in a Gaussian wave field. Set t0 as an
arbitrary time instant, h1 and h2 as wave crest heights and T�2 as the abscissa of the
second absolute minimum of the autocovariance cðTÞ ¼ Cð0;TÞ. Fedele (2005)
showed that the conditions

Zðt0Þ ¼ h1 and Zðt0 þ T�2Þ ¼ h2 (5)

are necessary and sufficient for the occurrence of two successive wave crests in the
limit of h1=s and h2=s approaching infinity. Conditions (5) are sufficient because the
conditional p.d.f. of ZðtÞ at time t0 þ T

p½Zðt0 þ TÞ ¼ u=Zðt0Þ ¼ h1; Zðt0 þ T�2Þ ¼ h2� (6)

tends to a delta function d½u� Zcðt0 þ TÞ� centered at the conditional mean
Zcðt0 þ TÞ:

Zcðt0 þ TÞ ¼ C1cðTÞ þ C2cðT � T�2Þ (7)

as both h1=s!1 and h2=s!1, where the coefficients C1 and C2 are given by

C1 ¼
h1cð0Þ � h2cðT�2Þ

c2
ð0Þ � c2

ðT�2Þ
; C2 ¼

h2cð0Þ � h1cðT�2Þ

c2
ð0Þ � c2

ðT�2Þ
. (8)

This implies that, in the limit of h1=s!1 and h2=s!1, all the realizations of the
Gaussian sea satisfying conditions (5), with probability approaching one, tend to the
deterministic profile Zcðt0 þ TÞ. This represents a wave structure of two successive
wave crests lagged in time by T�2 if

b0;b1 2 R
2
þ if sp0;

b0;b1 2 OðsÞ if s40

(
(9)

as one can see from Fig. 3. Here, b0 ¼ h1=s, b1 ¼ h2=s and OðsÞ is the open sectorial
region of R2

þ with aperture angle y ¼ p=2� 2 tan�1ðsÞ, that is,

OðsÞ ¼ ðb0;b1Þ 2 R2
þ : b0X0; b1X0; so

b1
b0

o
1

s

� �
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Fig. 3. Deterministic wave profile ZcðTÞ of two successive wave crests.
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and

s ¼
cðT�2Þ þ €cðT�2Þ

1þ cðT�2Þ €cðT
�
2Þ
.

Typical JONSWAP spectrums satisfy the condition s40 with s 2 ½0:14; 0:16�. As the
spectrum gets narrow the sector OðsÞ tends to cover all R2

þ, i.e. y! p=2, because s

approaches zero in the narrow-band limit.
In order to show that conditions (5) are also necessary, Fedele (2005) derived the

analytical expression of the expected number per unit time EX cðb0;b1; tÞ of local
maxima of the surface displacement ZðtÞ (at a fixed location in space) whose elevation
is between b0 and b0 þ db0, and which are followed by a local maximum with an
elevation between b1 and b1 þ db1 after a time lag between t and tþ dt. Fedele
showed that as both b0 and b1!1 in the t-domain there exists an infinitesimal
neighborhood dt�Oðb�10 ;b�11 Þ of t ¼ T�2 such that

EX cðb0;b1; tÞ ¼
EX cðb0;b1;T

�
2Þ expð�

1
2

K�dt2Þ;

0 elsewhere;

(
(10)

where the positive parameter K�40 is given by (the dot denotes time derivative)

K� ¼ �
€cðT�2Þ

1� €c
2
ðT�2Þ

€Zcðt0Þ€Zcðt0 þ T�2Þ. (11)

Here, €Zcðt0Þ and €Zcðt0 þ T�2Þ are the second-order time derivatives of the deterministic
profile Zcðt0 þ TÞ evaluated at T ¼ 0 and T ¼ T�2, respectively, that is,

€Zcðt0Þ ¼ að�b0 þ sb1Þ; €Zcðt0 þ T�2Þ ¼ að�b1 þ sb0Þ, (12)

where

a ¼
1þ cðT�2Þ €cðT

�
2Þ

1� c2
ðT�2Þ

.

Note that K� is greater or equal to zero because €cðT�2Þo0 by definition and both
€Zcðt0Þo0 and €Zcðt0 þ T�2Þo0 since Zcðt0 þ TÞ has two local maxima at t ¼ t0 and
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t ¼ t0 þ T�2. Thus, two successive local maxima of dimensionless amplitude b0 and
b1, respectively, attain the maximal expectation EX cðb0;b1; tÞ when the time lag
between their occurrence is equal to t ¼ T�2. Moreover, from Eq. (10) one concludes
that EX cðb0; b1;T

�
2 þ dtÞ ’ EX cðb0;b1;T

�
2Þ for dt of order OðK�1=2� Þ where K� ! 1

as both b0 and b1!1. This means that a local maximum of a very large amplitude
b0 followed by a local maximum of a very large amplitude b1 after a time lag
T�2 þ dt, with dt�Oðb�10 ; b�11 Þ, has almost the same maximal expectation as two
consecutive local maxima with amplitudes equal to b0 and b1, respectively, lagged in
time by T�2. However, two local maxima of large amplitude lagged in time by T�2 are
also two successive crests because conditions (5) are sufficient. Hence, conditions (5)
are also necessary in the limit of b0 !1 and b1!1.

As a corollary, Fedele (2005) derived an upper bound for the joint probability
density function of two successive wave crests as the following bivariate Rayleigh
distribution:

pWðb0;b1Þ ¼
b0b1
ð1� y2Þ

exp �
b20 þ b21
2ð1� y2Þ

� �
I0

yb0b1
1� y2

� �
. (13)

Here, the Rayleigh parameter is y ¼ cðT�2Þ=cð0Þ. The bivariate Rayleigh distribution
has been used by many authors to model the distribution of successive wave heights
in narrow-band Gaussian seas (cf. Rodriguez et al., 2000; 2002) or the distribution of
successive wave periods (cf. Myrhaug et al., 1995) and the parameter y is estimated
as

ym ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
R1
0 SðoÞ cosðoTmÞdo�2 þ ½

R1
0 SðoÞ sinðoTmÞdo�2

s2

s
(14)

with Tm the mean wave period. In Fig. 4 there are plotted the data points
ðT sc=T�2; ðb0 þ b1Þ=2Þ obtained from Monte Carlo simulations of Gaussian seas with
mean JONSWAP spectrum (200 000 waves). Here, T sc=T�2 is the normalized period
between two successive wave crests of dimensionless amplitudes b0 and b1,
respectively. One can see that the period T sc=T�2 of the highest successive wave
crests is very close to 1 in agreement with the theoretical results.
4. The occurrence of two successive wave crests in the space–time domain

In the following the analysis in the time domain of Fedele (2005) discussed in the
preceding section is extended to the space–time domain. Consider the fixed point
location x ¼ x0. What happens in the neighborhood of x0 if two large successive
wave crests are recorded in time at x0? An infinite set of scenarios can be thought
where collisions or interactions of different wave groups travelling with different
speeds along different directions may cause the formation of two extreme
consecutive crests. The space–time domain analysis presented here excludes all the
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Fig. 4. Data points ðT sc=T�2 ; ðb0 þ b1Þ=2Þ obtained fromMonte Carlo simulations. Here, T sc is the period

between two successive wave crests of dimensionless amplitudes b0 and b1, respectively.
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previous scenarios and surprisingly reveals that, with high probability, only a single
wave group has passed through the point x0 in its initial phase of decaying when two
large successive crests are recorded in the time domain at x0.

Consider the generic location x ¼ x0 þ X where X ¼ ðX ;Y Þ. At x ¼ x0 it is known
that the surface displacement xðx; tÞ has values equal to h1 and h2 at time t ¼ t0 and
t ¼ t0 þ T�2 respectively, that is,

xðx0; t0Þ ¼ h1; xðx0; t0 þ T�2Þ ¼ h2. (15)

What is the probability that the surface displacement xðx; tÞ assumes values between
u and uþ du at any fixed point x ¼ x0 þ X at any time t ¼ t0 þ T if two successive
wave crests of large amplitude are recorded at x ¼ x0 such as in Eq. (15)?

Consider the probability density function of the surface displacement xðx; tÞ at any
fixed point x ¼ x0 þ X at any time t ¼ t0 þ T given conditions (15), that is,

p½xðx0 þ X; t0 þ TÞ ¼ u=xðx0; t0Þ ¼ h1; xðx0; t0 þ T�2Þ ¼ h2�.

This conditional p.d.f. is Gaussian and its conditional mean xcðx0 þ X; t0 þ TÞ is
given by

xcðx0 þ X; t0 þ TÞ ¼ C1CðX;TÞ þ C2CðX;T � T�2Þ. (16)
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Here, the coefficients C1 and C2 are the same as in Eq. (8). The conditional
space–time variance s2c admits the following expression

s2cðx0 þ X; t0 þ TÞ

s2

¼ 1�
C2ðX;TÞ þCðX;T � T�2Þ � 2CðX;TÞCðX;T � T�2ÞCð0;T

�
2Þ=Cð0; 0Þ

Cð0; 0Þ �C2ð0;T�2Þ
.

ð17Þ

In the limit of h1=s!1 and h2=s!1, the ratio scðx0 þ X; t0 þ TÞ=xcðx0 þ
X; t0 þ TÞ ! 0 because xcðx0 þ X; t0 þ TÞ tends to infinity and scðx0 þ X; t0 þ TÞ is
bounded by the unconditional standard deviation s. Thus, all the realizations of the
Gaussian sea satisfying conditions (5), with probability approaching 1, tend to the
deterministic form xcðx0 þ X; t0 þ TÞ for very large crest heights, that is,

p½xðx0 þ X; t0 þ TÞ ¼ u=xðx0; t0Þ ¼ h1; xðx0; t0 þ T�2Þ ¼ h2�

! d½u� xcðx0 þ X; t0 þ TÞ�

as both h1=s and h2=s!1 where dðxÞ is the Dirac function. In the space–time
domain, the conditional mean xcðx0 þ X; t0 þ TÞ (see Eq. (16)) represents a wave
group which has passed closed by x0 at the apex of its development stage. It is during
its initial phase of decaying that at the location X ¼ 0, i.e. x ¼ x0, two successive
wave crests lagged in time by T�2 occur. In fact, at X ¼ 0, the time series xcðx0; t0 þ TÞ

is the same as the conditional mean Zcðt0 þ TÞ in Eq. (7). As an application, consider
the case of unidirectional waves in deep water with a mean JONSWAP spectrum.
According to Eq. (3), the wave group (16) can be written as

xcðX ;TÞ ¼
Z 1
0

~SðoÞ cosðkX � oT þ fðoÞÞdo, (18)

where the spectrum ~SðoÞ and phase function fðoÞ are given by

~SðoÞ ¼ SðoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2 þ 2C1C2 cosðoT�2Þ

q
, (19)

fðoÞ ¼ arctan
C2 sinðoT�2Þ

C1 þ C2 cosðoT�2Þ

and the wave number k ¼ o2=g. For sake of simplicity, assume a mean JONSWAP
spectrum ( T�2 ’ 0:9Tp ) and equal amplitudes h1 ¼ h2 ¼ h. In Fig. 5 the snapshots
of the wave group computed numerically using Eq. (16) at successive times T are
plotted. As one can see, the wave group moves in deep water with the group velocity
cg ’ 0:5Lp=Tp. A contraction of the group occurs as time evolves and the max
development stage is reached at time T ’ �0:5T�2 ¼ �0:45Tp at the location
x ¼ x0 � 0:41Lp, i.e. X ’ �0:41Lp, and gives rise to the isolated highest crest of
amplitude Hmax ¼ 1:1h. Subsequently, the group tends to expand and decay. It is
during this initial phase of decaying of the wave group that the two successive wave
crests are formed at time T ¼ 0 and T ¼ T�2 at the location x ¼ x0, i.e. X ¼ 0. In
order to explain this dynamics of the wave group, in Fig. 5 at time T ¼ �0:5T�2,
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Fig. 5. Snapshots of the wave group in Eq. (16) for h1 ¼ h2 ¼ h. The y-axis represents surface amplitudes

normalized with respect to h.
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consider the two waves labelled as a and b, respectively. At this time the wave b is the
central wave of the group with the max amplitude Hmax ¼ 1:1h, whereas the wave a

is just born from the tail of the group. As time evolves the wave a grows and the
wave b decreases in amplitude so that after a certain point in time the wave a tends to
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Fig. 6. Time series of the wave group in Eq. (16) at different X locations for h1 ¼ h2 ¼ h. The y-axis

represents surface amplitudes normalized with respect to h.

F. Fedele / Ocean Engineering 33 (2006) 2225–2239 2237
become the central wave of the group and the wave b tends to disappear from the main
core of the group as one can see from the snapshot at time T ¼ T�2 in Fig. 5. Thus
wave b interchanges its role of central wave of the group with wave a as the wave group
evolves in time. It is during this interchange event that two successive wave crests of
equal amplitude h occur at X ¼ 0. In particular, the first crest, which occurs at time
T ¼ 0, is due to the relaxation of the wave b which has reached its max amplitude at
time T ¼ �0:5T�2, whereas the second crest occurs at time T ¼ T�2 because of the
growth of the wave a. The interchange of roles between waves a and b is also clear from
Fig. 6 where the time series of the wave group at different space locations are plotted.
In particular, at X ¼ �0:4Lp the wave b is at the apex of its development stage with the
max amplitude Hmax ¼ 1:1h. As time evolves the group moves along the X -axis and
the wave b tends to decrease in amplitude, whereas the wave a grows in amplitude such
that at X ¼ 0 they both occur with the same amplitude h forming two successive crests.
Similar conclusions also hold for three-dimensional waves in undisturbed sea.
5. Conclusions

The theory of quasi-determinism of Boccotti (2000) is extended to investigate the
occurrence of successive wave crests in a Gaussian sea. It is proven that if two
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consecutive exceptionally high wave crests are recorded at a point during a sea
storm, most probably, a well defined wave group has transited at that point in the
early stage of its decay. Boccotti’s theory then reveals that the single wave group can
be thought as a ‘gene’ for a Gaussian sea when the interest is in the dynamics of the
surface displacement at high amplitude levels. With high probability the occurrence
of extreme events in a Gaussian sea are due to the dynamics of a wave group: either
an isolated extreme crest, an extreme crest-to-trough wave height or two consecutive
extreme crests occur for different configurations of the same wave group. The
relevance of this result is twofold. Firstly, the design of offshore structures resisting
to a double wave impact can be based on the wave forces generated by the mechanics
of a single wave group. On the other hand, this analysis provides a mathematical
mean for studying extreme events and their probability of occurrence in the context
of linear and nonlinear water waves by investigating the nonlinear evolution of a
wave group (cf. Fedele, 2004, 2006; Fedele and Arena, 2005).
Appendix

According to the theory of sea states, to the first order in a Stokes expansion, a
unidirectional random wave field can be represented as the linear superimposition of
a large number of wave harmonics as

xðx; tÞ ¼
XN

i¼1

ai cosðkix� oitþ �iÞ. (20)

Here, it is assumed that frequencies oi are different from each other, the number N is
infinitely large and the phase angles �i, uniformly distributed in ½0; 2p�, are
stochastically independent of each other. Furthermore, all the amplitudes ai satisfy
the frequency spectrum SðoÞ defined as

SðoÞDo ¼
X

i

a2
i

2
; oi 2 o�

Do
2
;oþ

Do
2

� �
. (21)

The jth order moment of the spectrum is mj ¼
R1
0

ojSðoÞdo. In particular, m0 ¼ s2,
where s is the standard deviation of Z. For a fixed point x ¼ x0 at the sea, the
recorded time series ZðtÞ ¼ xðx0; tÞ of the surface displacement xðx; tÞ is given by

ZðtÞ ¼
XN

i¼1

ai cosðoitþ ~�iÞ, (22)

where ~�i ¼ modðkix0 þ �i; 2pÞ. In the limit of N !1, ZðtÞ is a realization of a
stationary ergodic stochastic Gaussian process.
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